Symmetric Interior Penalty Discontinuous Galerkin Discretizations and Block Preconditioning for Heterogeneous Stokes Flow

Provable stable arbitrary order symmetric interior penalty (SIP) discontinuous Galerkin discretizations of heterogeneous, incompressible Stokes flow utilizing $Q^2_k$--$Q_{k-1}$ elements and hierarchical Legendre basis polynomials are developed and investigated. For solving the resulting linear system, a block preconditioned iterative method is proposed. The nested viscous problem is solved by a $hp$-multilevel preconditioned Krylov subspace method. For the $p$-coarsening, a two-level method utilizing element-block Jacobi preconditioned iterations as a smoother is employed. Piecewise bilinear ($Q^2_1$) and piecewise constant ($Q^2_0$) $p$-coarse spaces are considered. Finally, Galerkin $h$-coarsening is proposed and investigated for the two $p$-coarse spaces considered. Through a number of numerical experiments, we demonstrate that utilizing the $Q^2_1$ coarse space results in the most robust $hp$-multigrid method for heterogeneous Stokes flow. Using this $Q^2_1$ coarse space we observe that the convergen...

[1]  P. Fullsack An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models , 1995 .

[2]  Roberto F. Weinberg,et al.  Polydiapirs: multiwavelength gravity structures , 1992 .

[3]  Dave A. May,et al.  A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow , 2015 .

[4]  Blanca Ayuso de Dios,et al.  A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem , 2012, Journal of Scientific Computing.

[5]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[6]  Chi-Wang Shu,et al.  High order time discretization methods with the strong stability property , 2001 .

[7]  Taras Gerya,et al.  Discretization errors and free surface stabilization in the finite difference and marker‐in‐cell method for applied geodynamics: A numerical study , 2011 .

[8]  Cornelis Vuik,et al.  Scalable two-level preconditioning and deflation based on a piecewise constant subspace for (SIP)DG systems for diffusion problems , 2012, J. Comput. Appl. Math..

[9]  Youli Mao,et al.  Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations , 2015, J. Num. Math..

[10]  Cornelis Vuik,et al.  Fast linear solver for diffusion problems with applications to pressure computation in layered domains , 2014, Computational Geosciences.

[11]  Louis Moresi,et al.  Computational approaches to studying non-linear dynamics of the crust and mantle , 2007 .

[12]  Robert Scheichl,et al.  Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems , 2012, Numer. Linear Algebra Appl..

[13]  D. May,et al.  Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics , 2008 .

[14]  Wei Leng,et al.  Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies , 2011 .

[15]  Koen Hillewaert,et al.  On the stability of the symmetric interior penalty method for the Spalart-Allmaras turbulence model , 2013, J. Comput. Appl. Math..

[16]  S. V. Sobolev,et al.  SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology , 2008 .

[17]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[18]  Stéphane Zaleski,et al.  Numerical simulation of Rayleigh-Taylor instability for single and multiple salt diapirs , 1992 .

[19]  Ulrich Hansen,et al.  A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle , 2006 .

[20]  B. Rivière,et al.  Superconvergence and H(div) projection for discontinuous Galerkin methods , 2003 .

[21]  Martin Kronbichler,et al.  High accuracy mantle convection simulation through modern numerical methods , 2012 .

[22]  D. May,et al.  A free surface capturing discretization for the staggered grid finite difference scheme , 2016 .

[23]  Andrea Toselli,et al.  Mixed hp-DGFEM for incompressible flows. II: Geometric edge meshes , 2004 .

[24]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[25]  Shijie Zhong,et al.  Analytic solutions for Stokes' flow with lateral variations in viscosity , 1996 .

[26]  A. J. Anderson,et al.  Convection in the Earth's mantle , 1984 .

[27]  Paul J. Tackley,et al.  Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid , 2008 .

[28]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[29]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[30]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .

[31]  Boris J. P. Kaus,et al.  Comparing thin-sheet models with 3-D multilayer models for continental collision , 2011 .

[32]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[33]  YE XIU NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H ( DIV ) ELEMENTS , 2008 .

[34]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[35]  Julian P. Lowman,et al.  Mantle Convection in the Earth and Planets , 2002 .

[36]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[37]  D. Yuen,et al.  Characteristics-based marker method with conservative finite-differences schemes for modeling of highly non-newtonian and temperature-dependent geophysical flow processes with strongly variable transport properties , 2003 .

[38]  Peter Bastian,et al.  A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure , 2013, Computational Geosciences.

[39]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[40]  C. Thieulot,et al.  DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems , 2008 .

[41]  Marie-Pierre Doin,et al.  A comparison of methods for the modeling of thermochemical convection , 1997 .

[42]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[43]  H. L. Stone,et al.  1518-G - Analysis of Gas-Cap or Dissolved-Gas Drive Reservoirs , 1961 .

[44]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[45]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[46]  M. Lukáčová-Medvid'ová,et al.  Comparison of continuous and discontinuous Galerkin approaches for variable‐viscosity Stokes flow , 2016 .

[47]  Hans Muhlhaus,et al.  A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials , 2003 .

[48]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[49]  Taras Gerya,et al.  An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity , 2013 .

[50]  Georg Stadler,et al.  Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems , 2009 .

[51]  Koen Hillewaert,et al.  Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries , 2013 .

[52]  A. Poliakov,et al.  Diapirism and topography , 1992 .