A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations
暂无分享,去创建一个
[1] M. Lamnii,et al. Cubic spline quasi-interpolants on Powell–Sabin partitions , 2014 .
[2] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[3] Marian Neamtu,et al. What is the natural generalization of univariate splines to higher dimensions , 2001 .
[4] Ming-Jun Lai,et al. On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .
[5] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[6] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[7] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[8] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[9] Hendrik Speleers,et al. A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .
[10] Jan Groselj,et al. C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..
[11] Adhemar Bultheel,et al. Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..
[12] Hendrik Speleers. A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..
[13] Hendrik Speleers,et al. Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..
[14] Huan-Wen Liu,et al. A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..
[15] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[16] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[17] Ahmed Tijini,et al. A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..
[18] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[19] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[20] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[21] Paul Dierckx,et al. From PS-splines to NURPS , 2000 .