A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations

In the paper, a family of bivariate super spline spaces of arbitrary degree defined on a triangulation with Powell–Sabin refinement is introduced. It includes known spaces of arbitrary smoothness r and degree $$3r-1$$3r-1 but provides also other choices of spline degree for the same r which, in particular, generalize a known space of $$\mathscr {C}^{1}$$C1 cubic super splines. Minimal determining sets of the proposed super spline spaces of arbitrary degree are presented, and the interpolation problems that uniquely specify their elements are provided. Furthermore, a normalized representation of the discussed splines is considered. It is based on the definition of basis functions that have local supports, are nonnegative, and form a partition of unity. The basis functions share numerous similarities with classical univariate B-splines.

[1]  M. Lamnii,et al.  Cubic spline quasi-interpolants on Powell–Sabin partitions , 2014 .

[2]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[3]  Marian Neamtu,et al.  What is the natural generalization of univariate splines to higher dimensions , 2001 .

[4]  Ming-Jun Lai,et al.  On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .

[5]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[6]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[7]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[8]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[9]  Hendrik Speleers,et al.  A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .

[10]  Jan Groselj,et al.  C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..

[11]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..

[12]  Hendrik Speleers A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..

[13]  Hendrik Speleers,et al.  Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..

[14]  Huan-Wen Liu,et al.  A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..

[15]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[16]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[17]  Ahmed Tijini,et al.  A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..

[18]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[19]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[20]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[21]  Paul Dierckx,et al.  From PS-splines to NURPS , 2000 .