Enhancing sampling in computational statistics using modified hamiltonians
暂无分享,去创建一个
[1] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[2] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[3] L. Carin,et al. Monomial Gamma Monte Carlo Sampling , 2016 .
[4] Adrian Sandu,et al. A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation , 2015 .
[5] J. M. Sanz-Serna,et al. Randomized Hamiltonian Monte Carlo , 2015, 1511.09382.
[6] D. Dunson,et al. Recycling Intermediate Steps to Improve Hamiltonian Monte Carlo , 2015, Bayesian Analysis.
[7] Ingmar Schuster,et al. Gradient Importance Sampling , 2015, 1507.05781.
[8] Justin Solomon,et al. Exponential Integration for Hamiltonian Monte Carlo , 2015, ICML.
[9] Christian P. Robert,et al. Bayesian computation: a summary of the current state, and samples backwards and forwards , 2015, Statistics and Computing.
[10] Hongkai Zhao,et al. Hamiltonian Monte Carlo Acceleration Using Neural Network Surrogate functions , 2015 .
[11] Arthur Gretton,et al. Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families , 2015, NIPS.
[12] Robert Leenders,et al. Hamiltonian ABC , 2015, UAI.
[13] M. Betancourt,et al. Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.
[14] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[15] Tijana Radivojević,et al. Constant pressure hybrid Monte Carlo simulations in GROMACS , 2014, Journal of Molecular Modeling.
[16] M. Betancourt,et al. The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.
[17] Jesús María Sanz-Serna,et al. Extra Chance Generalized Hybrid Monte Carlo , 2014, J. Comput. Phys..
[18] Jascha Sohl-Dickstein,et al. Hamiltonian Monte Carlo Without Detailed Balance , 2014, ICML.
[19] Yichuan Zhang,et al. Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models , 2014, NIPS.
[20] Jesús María Sanz-Serna,et al. Numerical Integrators for the Hybrid Monte Carlo Method , 2014, SIAM J. Sci. Comput..
[21] J. M. Sanz-Serna,et al. Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.
[22] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[23] Jan-Willem van de Meent,et al. Tempering by Subsampling , 2014, 1401.7145.
[24] M. Betancourt,et al. Hamiltonian Monte Carlo for Hierarchical Models , 2013, 1312.0906.
[25] Liam Paninski,et al. Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions , 2013, NIPS.
[26] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[27] T. Takaishi. Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm , 2013, 1305.3184.
[28] Jitse Niesen,et al. On an asymptotic method for computing the modified energy for symplectic methods , 2013, 1304.0673.
[29] Nando de Freitas,et al. Adaptive Hamiltonian and Riemann manifold Monte Carlo samplers , 2013, ICML 2013.
[30] B. Escribano,et al. Combining stochastic and deterministic approaches within high efficiency molecular simulations , 2013 .
[31] Yichuan Zhang,et al. Continuous Relaxations for Discrete Hamiltonian Monte Carlo , 2012, NIPS.
[32] M. Girolami,et al. Lagrangian Dynamical Monte Carlo , 2012, 1211.3759.
[33] Jason A. Wagoner,et al. Reducing the effect of Metropolization on mixing times in molecular dynamics simulations. , 2012, The Journal of chemical physics.
[34] Jascha Sohl-Dickstein,et al. Hamiltonian Monte Carlo with Reduced Momentum Flips , 2012, ArXiv.
[35] Jascha Sohl-Dickstein,et al. Hamiltonian Annealed Importance Sampling for partition function estimation , 2012, ArXiv.
[36] Nando de Freitas,et al. Adaptive MCMC with Bayesian Optimization , 2012, AISTATS.
[37] Raquel Urtasun,et al. A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.
[38] Babak Shahbaba,et al. Split HMC for Gaussian Process Models , 2012, 1201.3973.
[39] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[40] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[41] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[42] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[43] M. Betancourt. Nested Sampling with Constrained Hamiltonian Monte Carlo , 2010, 1005.0157.
[44] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[45] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[46] Scott S. Hampton,et al. A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.
[47] Mark A. Girolami,et al. Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..
[48] Nawaf Bou-Rabee,et al. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..
[49] A. Pettitt,et al. Marginal likelihood estimation via power posteriors , 2008 .
[50] Sebastian Reich,et al. Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system. , 2008, The journal of physical chemistry. B.
[51] Robert B. Gramacy,et al. Importance tempering , 2007, Stat. Comput..
[52] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[53] David J. Earl,et al. Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.
[54] Robert D. Skeel,et al. Monitoring energy drift with shadow Hamiltonians , 2005 .
[55] T. Takaishi,et al. Testing and tuning symplectic integrators for the hybrid Monte Carlo algorithm in lattice QCD. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[56] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[57] Robert D. Skeel,et al. Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..
[58] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[59] A. Kennedy,et al. Cost of the Generalised Hybrid Monte Carlo Algorithm for Free Field Theory , 2000, hep-lat/0008020.
[60] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .
[61] Y. Sugita,et al. Replica-exchange molecular dynamics method for protein folding , 1999 .
[62] Andrew Gelman,et al. General methods for monitoring convergence of iterative simulations , 1998 .
[63] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[64] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[65] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[66] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[67] T. Bayes. An essay towards solving a problem in the doctrine of chances , 2003 .
[68] Sourendu Gupta,et al. The acceptance probability in the hybrid Monte Carlo method , 1990 .
[69] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[70] Paul B. Mackenze. An Improved Hybrid Monte Carlo Method , 1989 .
[71] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[72] Wang,et al. Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.
[73] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[74] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[75] Sebastian Reich,et al. Multiple-time-stepping generalized hybrid Monte Carlo methods , 2015, J. Comput. Phys..
[76] Ziyun Wang,et al. Predictive Adaptation of Hybrid Monte Carlo with Bayesian Parametric Bandits , 2011 .
[77] Nial Friel,et al. Estimating the model evidence: a review , 2011 .
[78] P. Atzberger. The Monte-Carlo Method , 2006 .
[79] Sebastian Reich,et al. The Targeted Shadowing Hybrid Monte Carlo (TSHMC) Method , 2006 .
[80] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[81] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[82] K. Hanson. Use of probability gradients in hybrid MCMC and a new convergence test , 2002 .
[83] A. Mira. On Metropolis-Hastings algorithms with delayed rejection , 2001 .
[84] Lingyu Chen,et al. Exploring Hybrid Monte Carlo in Bayesian Computation , 2000 .
[85] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[86] P. Laplace. Théorie analytique des probabilités , 1995 .
[87] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[88] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[89] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[90] John Geweke,et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .
[91] A. Kennedy. The theory of hybrid stochastic algorithms , 1990 .
[92] D. Frenkel. Free-energy computation and first-order phase transitions , 1986 .
[93] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[94] N. Metropolis. THE BEGINNING of the MONTE CARLO METHOD , 2022 .