Smallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application

Suppose $X$ is an $N \times n$ complex matrix whose entries are centered, independent, and identically distributed random variables with variance $1/n$ and whose fourth moment is of order ${\mathcal O}(n^{-2})$. In the first part of the paper, we consider the non-Hermitian matrix $X A X^* - z$, where $A$ is a deterministic matrix whose smallest and largest singular values are bounded below and above respectively, and $z\neq 0$ is a complex number. Asymptotic probability bounds for the smallest singular value of this model are obtained in the large dimensional regime where $N$ and $n$ diverge to infinity at the same rate. In the second part of the paper, we consider the special case where $A = J = [1_{i-j = 1\mod n} ]$ is a circulant matrix. Using the result of the first part, it is shown that the limit eigenvalue distribution of $X J X^*$ exists in the large dimensional regime, and we determine this limit explicitly. A statistical application of this result devoted towards testing the presence of correlations within a multivariate time series is considered. Assuming that $X$ represents a ${\mathbb C}^N$-valued time series which is observed over a time window of length $n$, the matrix $X J X^*$ represents the one-step sample autocovariance matrix of this time series. Guided by the result on the limit spectral measure of this matrix, a whiteness test against an MA correlation model on the time series is introduced. Numerical simulations show the excellent performance of this test.

[1]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Leonid Pastur,et al.  A Simple Approach to the Global Regime of Gaussian Ensembles of Random Matrices , 2005 .

[4]  Nicholas A. Cook,et al.  Limiting spectral distribution for non-Hermitian random matrices with a variance profile , 2016, 1612.04428.

[5]  F. Wegner Bounds on the density of states in disordered systems , 1981 .

[6]  Hoi H. Nguyen,et al.  On the least singular value of random symmetric matrices , 2011, 1102.1476.

[7]  Arup Bose,et al.  Joint convergence of sample autocovariance matrices when $p/n\to 0$ with application , 2019 .

[8]  Arup Bose,et al.  Large sample behaviour of high dimensional autocovariance matrices , 2016, 1603.09145.

[9]  Alexander Tikhomirov,et al.  On the Asymptotic Spectrum of Products of Independent Random Matrices. , 2010, 1012.2710.

[10]  Arup Bose,et al.  A New Method for Bounding Rates of Convergence of Empirical Spectral Distributions , 2004 .

[11]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[12]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[13]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .

[14]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[15]  Philippe Loubaton,et al.  On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices , 2014, 1405.2006.

[16]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[17]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[18]  Friedrich Götze,et al.  Asymptotic expansions for bivariate von Mises functionals , 1979 .

[19]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[20]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[21]  Jianfeng Yao,et al.  On testing for high-dimensional white noise , 2018, The Annals of Statistics.

[22]  C. Bordenave,et al.  The circular law , 2012 .

[23]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[24]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[25]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[26]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[27]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[28]  E. Cowley,et al.  Adaptive Radar Detection and Estimation , 1993 .

[29]  Jianfeng Yao,et al.  Joint Central Limit Theorem for Eigenvalue Statistics from Several Dependent Large Dimensional Sample Covariance Matrices with Application , 2018 .

[30]  M. Ledoux The concentration of measure phenomenon , 2001 .

[31]  Nicholas A. Cook Lower bounds for the smallest singular value of structured random matrices , 2016, The Annals of Probability.

[32]  A. Bose,et al.  Polynomial generalizations of the sample variance-covariance matrix when pn−1 → 0 , 2016 .

[33]  L. Pastur,et al.  Limits of infinite interaction radius, dimensionality and the number of components for random operators with off-diagonal randomness , 1993 .

[34]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[35]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[36]  M. Rudelson,et al.  The smallest singular value of a random rectangular matrix , 2008, 0802.3956.

[37]  D. Paul,et al.  Spectral analysis of sample autocovariance matrices of a class of linear time series in moderately high dimensions , 2017 .

[38]  A. Soshnikov,et al.  Products of Independent Elliptic Random Matrices , 2014, 1403.6080.

[39]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[40]  A. Bose,et al.  Large Covariance and Autocovariance Matrices , 2018 .

[41]  D. Paul,et al.  Spectral analysis of linear time series in moderately high dimensions , 2015, 1504.06360.

[42]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[43]  A. Bose,et al.  ESTIMATION OF AUTOCOVARIANCE MATRICES FOR INFINITE DIMENSIONAL VECTOR LINEAR PROCESS , 2014 .

[44]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[45]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[46]  D. Paul,et al.  On the Marčenko-Pastur law for linear time series , 2013, 1310.7270.

[47]  Theodore P. Hill,et al.  Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.

[48]  Nicholas A. Cook,et al.  Non-Hermitian random matrices with a variance profile (I): deterministic equivalents and limiting ESDs , 2016 .

[49]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[50]  Roman Vershynin,et al.  Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.

[51]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[52]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .