A Probabilistic Approach to the Dynamics of Wear Tests

Wear predictions of components belonging to pressurized water reactors require impactsliding wear tests. Some scatter of the results have often been related to the complex dynamics of the test rig, which may be sensitive to small variations of parameters such as gaps or eccentricities. A probabilistic method is proposed here, which takes into account the actual dispersion of test parameters and the uncertainties on physical parameters for the computation of the test rig dynamics. The probability density function of wear work rate is used to assess the suitability of test parameters in terms of motion stability. An application of the method to some room temperature wear tests is presented. @S0742-4787~00!02403-6#