Magnetic mixed matrix membranes in air separation

Ethylcellulose (EC) or linear polyimide (LPI) and magnetic neodymium powder particles MQP-14-12 were used for the preparation of inorganic-organic hybrid membranes. For all the membranes, N2, O2 and air permeability were examined. Mass transport coefficients were determined using the Time Lag System based on dynamic experiments in a constant pressure system. The results showed that the membrane permeation properties were improved by the addition of magnetic neodymium particles to the polymer matrix. The magnetic ethylcellulose and polyimide membranes exhibited higher gas permeability and diffusivity, while their permeability selectivity and solubility were either unchanged or slightly increased. Polyimide mixed matrix membranes were characterised by a higher thermal and mechanical stability, larger filler loading, better magnetic properties and reasonable selectivity in the air separation.

[1]  Gabriela Dudek,et al.  Structure morphology problems in the air separation by polymer membranes with magnetic particles , 2012 .

[2]  R. Turczyn,et al.  Preparation and Characterization of Iron Oxides – Polymer Composite Membranes , 2012 .

[3]  J. Michalov Permeability of porous membrane , 2012 .

[4]  Gabriela Dudek,et al.  Influence of Various Parameters on the Air Separation Process by Magnetic Membranes , 2012 .

[5]  H. Strathmann,et al.  Introduction to Membrane Science and Technology , 2011 .

[6]  B. C. Ng,et al.  Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .

[7]  V. Hynek,et al.  Mixed matrix membranes based on hyperbranched polyimide and mesoporous silica for gas separation , 2011 .

[8]  P. Wankat,et al.  Hybrid Membrane-Cryogenic Distillation Air Separation Process for Oxygen Production , 2011 .

[9]  C. Staudt,et al.  Preparation of hybrid materials containing copolyimides covalently linked with carbon nanotubes , 2011 .

[10]  J. Brus,et al.  Synthesis and Properties of Hyperbranched Polyimides Combined with Silica , 2010 .

[11]  Benny D. Freeman,et al.  Membrane Gas Separation: Freeman/Membrane Gas Separation , 2010 .

[12]  A. Rybak,et al.  Air Enrichment by Polymeric Magnetic Membranes , 2010 .

[13]  V. Hynek,et al.  Comparison of transport properties of hyperbranched and linear polyimides , 2010 .

[14]  A. Rybak,et al.  ON THE AIR ENRICHMENT BY MAGNETIC MEMBRANES , 2010 .

[15]  P. Sysel,et al.  Preparation and characterization of hyperbranched polyimides based on 4,4’,4’’-triaminotriphenyl-methane , 2009 .

[16]  J. Stejskal,et al.  Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis , 2009 .

[17]  W. Kaszuwara,et al.  On the air enrichment by polymer magnetic membranes , 2009 .

[18]  A. Rybak,et al.  "Smoluchowski type" Equations for Modelling of Air Separation by Membranes with Various Structure , 2009 .

[19]  Necati Özkan,et al.  Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates , 2009 .

[20]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[21]  L. Shao,et al.  Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations , 2009 .

[22]  Norman N. Li Advanced membrane technology and applications , 2008 .

[23]  R. Composto,et al.  Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers , 2008 .

[24]  B. Seoane,et al.  Gas permeation characteristics of heterogeneous ODPA–BIS P polyimide membranes at different temperatures , 2007 .

[25]  B. Kruczek,et al.  Development and characterization of homopolymers and copolymers from the family of polyphenylene oxides , 2007 .

[26]  T. A. Hatton,et al.  Orientational dependence of apparent magnetic susceptibilities of superparamagnetic nanoparticles in planar structured arrays: Effect on magnetic moments of nanoparticle-coated core–shell magnetic beads , 2007 .

[27]  Z. Grzywna,et al.  Studies on the air membrane separation in the presence of a magnetic field , 2007 .

[28]  L. Brožová,et al.  Heterogeneous membranes based on a composite of a hypercrosslinked microparticle adsorbent and polyimide binder , 2007 .

[29]  Ivo Vávra,et al.  Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles , 2007 .

[30]  A. Toikka,et al.  Transport of Small Molecules through Polyphenylene Oxide Membranes Modified by Fullerene , 2007 .

[31]  Hong-Joo Lee,et al.  Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature , 2006 .

[32]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[33]  A. Corma,et al.  Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). , 2004, Angewandte Chemie.

[34]  Stephen J. Miller,et al.  Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves , 2003 .

[35]  V. Naletov,et al.  On the magnetism of liquid nitrogen–liquid oxygen mixture , 2003 .

[36]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[37]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[38]  J. Ferraris,et al.  Selective Matrimid Membranes Containing Mesoporous Molecular Sieves , 2002 .

[39]  A. Scranton,et al.  Synthesis and characterization of polymeric emulsifiers containing reversible hydrophobes: poly(methacrylic acid-g-ethylene glycol) , 2001 .

[40]  T. Matsuura,et al.  Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance , 2000 .

[41]  W. Massa Crystal Structure Determination , 2000 .

[42]  R. Baker Membrane Technology and Applications , 1999 .

[43]  T. Matsuura,et al.  Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide , 1998 .

[44]  T. Matsuura,et al.  Effect of thickness of the PPO membranes on the surface morphology , 1998 .

[45]  J. Caro,et al.  Basic Principles of Membrane Technology , 1998 .

[46]  Xin-Gui Li,et al.  Water-Casting Ultrathin-Film Composite Membranes for Air Separation , 1996 .

[47]  Xin-Gui Li,et al.  Air Separation Properties and Stabilities of Blend Membranes of Liquid Crystals with Ethyl Cellulose , 1995 .

[48]  Richard D. Noble,et al.  Membrane separations technology : principles and applications , 1995 .

[49]  T. Matsuura,et al.  Membrane Gas Separation: A Critical Overview , 1993 .

[50]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[51]  N. Lotan,et al.  Biodegradation of polymeric drug carriers: Kinetic modeling , 1988 .

[52]  S. Hendricks,et al.  Crystal structure determination , 1926 .