A Proposal of Condition Monitoring with Missing Data and Small-Magnitude Faults in Industrial Plants

[1]  Adrián Rodríguez Ramos,et al.  A novel fault diagnosis scheme applying fuzzy clustering algorithms , 2017, Appl. Soft Comput..

[2]  Hazem Nounou,et al.  Fault detection of uncertain nonlinear process using interval-valued data-driven approach , 2019, Chemical Engineering Science.

[3]  Zhiqiang Ge,et al.  Review on data-driven modeling and monitoring for plant-wide industrial processes , 2017 .

[4]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[5]  Abel Folch-Fortuny,et al.  PLS model building with missing data: New algorithms and a comparative study , 2017 .

[6]  Rahman Mm,et al.  Missing Value Imputation Using Stratified Supervised Learning for Cardiovascular Data , 2016 .

[7]  S. Joe Qin,et al.  Reconstruction-Based Fault Identification Using a Combined Index , 2001 .

[8]  Bart De Ketelaere,et al.  A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional, time-dependent processes , 2016 .

[9]  Francisco Herrera,et al.  Missing data imputation for fuzzy rule-based classification systems , 2012, Soft Comput..

[10]  Una Propuesta de Sistema de Diagnóstico de Fallos Robusto Ante la Presencia de Pérdida de Información y Ruido en Sistemas Mecánicos , 2021, Revista Politécnica.

[11]  Daniel G. Sbarbaro-Hofer,et al.  Outliers detection in environmental monitoring databases , 2011, Eng. Appl. Artif. Intell..

[12]  Faisal Khan,et al.  Improved latent variable models for nonlinear and dynamic process monitoring , 2017 .

[13]  Richard D. Braatz,et al.  Principal Component Analysis of Process Datasets with Missing Values , 2017 .

[14]  Khaoula Ben Abdellafou,et al.  Fault detection of uncertain nonlinear process using reduced interval kernel principal component analysis (RIKPCA) , 2020 .

[15]  José Manuel Benítez,et al.  Fault detection based on time series modeling and multivariate statistical process control , 2018, Chemometrics and Intelligent Laboratory Systems.

[16]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[17]  Moisès Graells,et al.  Fault diagnosis of chemical processes with incomplete observations: A comparative study , 2016, Comput. Chem. Eng..

[18]  Orestes Llanes-Santiago,et al.  Enhanced dynamic approach to improve the detection of small-magnitude faults , 2016 .

[19]  Tu Bao Ho,et al.  An efficient kernel matrix evaluation measure , 2008, Pattern Recognit..

[20]  Julie Josse,et al.  Principal component analysis with missing values: a comparative survey of methods , 2015, Plant Ecology.

[21]  Esther-Lydia Silva-Ramírez,et al.  An Application Sample of Machine Learning Tools, Such as SVM and ANN, for Data Editing and Imputation , 2018 .