A Proposal of Condition Monitoring with Missing Data and Small-Magnitude Faults in Industrial Plants
暂无分享,去创建一个
Orestes Llanes-Santiago | Carlos Cruz Corona | Antônio José da Silva Neto | José Manuel Bernal de Lázaro | Marcelo Lisboa Rocha | O. Llanes-Santiago | A. Neto | M. L. Rocha | J. M. B. D. Lázaro | C. C. Corona
[1] Adrián Rodríguez Ramos,et al. A novel fault diagnosis scheme applying fuzzy clustering algorithms , 2017, Appl. Soft Comput..
[2] Hazem Nounou,et al. Fault detection of uncertain nonlinear process using interval-valued data-driven approach , 2019, Chemical Engineering Science.
[3] Zhiqiang Ge,et al. Review on data-driven modeling and monitoring for plant-wide industrial processes , 2017 .
[4] Russ B. Altman,et al. Missing value estimation methods for DNA microarrays , 2001, Bioinform..
[5] Abel Folch-Fortuny,et al. PLS model building with missing data: New algorithms and a comparative study , 2017 .
[6] Rahman Mm,et al. Missing Value Imputation Using Stratified Supervised Learning for Cardiovascular Data , 2016 .
[7] S. Joe Qin,et al. Reconstruction-Based Fault Identification Using a Combined Index , 2001 .
[8] Bart De Ketelaere,et al. A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional, time-dependent processes , 2016 .
[9] Francisco Herrera,et al. Missing data imputation for fuzzy rule-based classification systems , 2012, Soft Comput..
[10] Una Propuesta de Sistema de Diagnóstico de Fallos Robusto Ante la Presencia de Pérdida de Información y Ruido en Sistemas Mecánicos , 2021, Revista Politécnica.
[11] Daniel G. Sbarbaro-Hofer,et al. Outliers detection in environmental monitoring databases , 2011, Eng. Appl. Artif. Intell..
[12] Faisal Khan,et al. Improved latent variable models for nonlinear and dynamic process monitoring , 2017 .
[13] Richard D. Braatz,et al. Principal Component Analysis of Process Datasets with Missing Values , 2017 .
[14] Khaoula Ben Abdellafou,et al. Fault detection of uncertain nonlinear process using reduced interval kernel principal component analysis (RIKPCA) , 2020 .
[15] José Manuel Benítez,et al. Fault detection based on time series modeling and multivariate statistical process control , 2018, Chemometrics and Intelligent Laboratory Systems.
[16] Aníbal R. Figueiras-Vidal,et al. Pattern classification with missing data: a review , 2010, Neural Computing and Applications.
[17] Moisès Graells,et al. Fault diagnosis of chemical processes with incomplete observations: A comparative study , 2016, Comput. Chem. Eng..
[18] Orestes Llanes-Santiago,et al. Enhanced dynamic approach to improve the detection of small-magnitude faults , 2016 .
[19] Tu Bao Ho,et al. An efficient kernel matrix evaluation measure , 2008, Pattern Recognit..
[20] Julie Josse,et al. Principal component analysis with missing values: a comparative survey of methods , 2015, Plant Ecology.
[21] Esther-Lydia Silva-Ramírez,et al. An Application Sample of Machine Learning Tools, Such as SVM and ANN, for Data Editing and Imputation , 2018 .