Approximations for Asian Options in Local Volatility Models
暂无分享,去创建一个
Andrea Pascucci | Stefano Pagliarani | Paolo Foschi | S. Pagliarani | A. Pascucci | P. Foschi | Stefano Pagliarani
[1] J. Vecer. A new PDE approach for pricing arithmetic average Asian options , 2001 .
[2] H. O. Fattorini,et al. The time-optimal control problem in Banach spaces , 1974 .
[3] L. Rogers,et al. The value of an Asian option , 1995, Journal of Applied Probability.
[4] M. Yor,et al. Quelques relations entre processus de Bessel, options asiatiques et fonctions confluentes hypergéométriques , 1992 .
[5] D. Dufresne. Laguerre Series for Asian and Other Options , 2000 .
[6] William T. Shaw,et al. Modelling financial derivatives with Mathematica : mathematical models and benchmark algorithms , 1998 .
[7] K. Govinder,et al. Solving The Asian Option Pde Using Lie Symmetry Methods , 2010 .
[8] A. Pascucci,et al. Path dependent volatility , 2008 .
[9] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] William T. Shaw,et al. Differential equations and asymptotic solutions for arithmetic Asian options: ‘Black–Scholes formulae’ for Asian rate calls , 2008, European Journal of Applied Mathematics.
[12] Emilio Barucci,et al. Some Results on Partial Differential Equations and Asian Options , 2001 .
[13] Jean-Pierre Fouque,et al. Pricing Asian options with stochastic volatility , 2003 .
[14] Andrea Pascucci,et al. Free boundary and optimal stopping problems for American Asian options , 2007, Finance Stochastics.
[15] Steven Kou,et al. Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..
[16] Bara Kim,et al. Pricing of geometric Asian options under Heston's stochastic volatility model , 2014 .
[17] V. Henderson,et al. On the equivalence of floating- and fixed-strike Asian options , 2002, Journal of Applied Probability.
[18] Friedrich Hubalek,et al. On the explicit evaluation of the Geometric Asian options in stochastic volatility models with jumps , 2011, J. Comput. Appl. Math..
[19] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[20] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[21] Michael Schröder,et al. ON CONSTRUCTIVE COMPLEX ANALYSIS IN FINANCE : EXPLICIT FORMULAS FOR ASIAN OPTIONS , 2008 .
[22] J. V. Leeuwen. The domino effect , 2004, physics/0401018.
[23] Vadim Linetsky,et al. Spectral Expansions for Asian (Average Price) Options , 2004, Oper. Res..
[24] M. Yor. On some exponential functionals of Brownian motion , 1992, Advances in Applied Probability.
[25] Akihiko Takahashi,et al. Pricing Barrier and Average Options Under Stochastic Volatility Environment , 2009 .
[26] L. Rogers,et al. Complete Models with Stochastic Volatility , 1998 .
[27] Andrea Pascucci,et al. Expansion formulae for local Levy models , 2011 .
[28] S. Pagliarani,et al. Analytical approximation of the transition density in a local volatility model , 2012 .
[29] Claudio Albanese,et al. Coherent Global Market Simulations and Securitization Measures for Counterparty Credit Risk , 2010 .
[30] Erhan Bayraktar,et al. Pricing Asian Options for Jump Diffusions , 2007, ArXiv.
[31] Emmanuel Gobet,et al. Weak approximation of averaged diffusion processes , 2014 .
[32] M. Yor. Sur certaines fonctionnelles exponentielles du mouvement brownien réel , 1992, Journal of Applied Probability.
[33] P. Wilmott,et al. A Note on Average Rate Options with Discrete Sampling , 1995, SIAM J. Appl. Math..
[34] A note on pricing Asian derivatives with continuous geometric averaging , 1999 .
[35] J. Ingersoll. Theory of Financial Decision Making , 1987 .
[36] D. Dufresne. The integrated square-root process , 2001 .
[37] Mohamed Karim Sbai,et al. Exact retrospective Monte Carlo computation of arithmetic average Asian options , 2007, Monte Carlo Methods Appl..
[38] Andrea Pascucci,et al. Parametrix Approximation of Diffusion Transition Densities , 2010, SIAM J. Financial Math..
[39] J. Coron. Control and Nonlinearity , 2007 .
[40] A. Pascucci,et al. The obstacle problem for a class of hypoelliptic ultraparabolic equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[41] Jin E. Zhang. A Semi-Analytical Method for Pricing and Hedging Continuously Sampled Arithmetic Average Rate Options , 2001 .
[42] Lower bounds for densities of Asian type stochastic differential equations , 2010 .
[43] M. Fu,et al. Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .
[44] N. Yoshida,et al. Monte Carlo Simulation with Asymptotic Method , 2005 .
[45] A Novel Reduction of the Simple Asian Option and Lie-Group Invariant Solutions , 2009 .
[46] R. E. Kalman,et al. Controllability of linear dynamical systems , 1963 .
[47] A. Dassios,et al. The square-root process and Asian options , 2006 .
[48] Akihiko Takahashi,et al. Pricing Average Options on Commodities , 2011 .
[49] A. Kemna,et al. A pricing method for options based on average asset values , 1990 .
[50] Paolo Guasoni,et al. Optimal importance sampling with explicit formulas in continuous time , 2007, Finance Stochastics.