Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach

Three-qubit quantum gates are key ingredients for quantum error correction and quantum-information processing. We generate quantum-control procedures to design three types of three-qubit gates, namely Toffoli, controlled-NOT-NOT, and Fredkin gates. The design procedures are applicable to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-induced noise and show its robustness against random external noise generated by the control electronics. The three-qubit gates are designed via the machine-learning algorithm called subspace-selective self-adaptive differential evolution.

[1]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[2]  C. Rigetti,et al.  Quantum gates for superconducting qubits , 2009 .

[3]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[4]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[5]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[6]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[7]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[8]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[9]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[10]  Giuseppe Dattoli,et al.  Time‐ordering techniques and solution of differential difference equation appearing in quantum optics , 1986 .

[11]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[12]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[13]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[14]  M. Shapiro,et al.  Laser control of molecular processes. , 1992, Annual review of physical chemistry.

[15]  Barry C. Sanders,et al.  Evolutionary Algorithms for Hard Quantum Control , 2014, 1403.0943.

[16]  Jens Koch,et al.  Life after charge noise: recent results with transmon qubits , 2008, Quantum Inf. Process..

[17]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[18]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[19]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[20]  R. Fletcher Practical Methods of Optimization , 1988 .

[21]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[22]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[23]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[24]  John M. Martinis,et al.  Resonator-zero-qubit architecture for superconducting qubits , 2011, 1105.3997.

[25]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[26]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[27]  Sahin Kaya Ozdemir,et al.  Kraus representation of a damped harmonic oscillator and its application , 2004 .

[28]  J Shamir,et al.  Optical computing and the Fredkin gates. , 1986, Applied optics.

[29]  N. Khaneja,et al.  Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity , 2005 .

[30]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[33]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[34]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[35]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[36]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[37]  Chau,et al.  Simple realization of the Fredkin gate using a series of two-body operators. , 1995, Physical review letters.

[38]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[39]  Easwar Magesan,et al.  Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout. , 2014, Physical review letters.

[40]  S. Schirmer,et al.  Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered , 2011, 1103.5435.

[41]  Yaron Silberberg,et al.  Coherent quantum control of two-photon transitions by a femtosecond laser pulse , 1998, Nature.

[42]  William W. Cohen,et al.  Proceedings of the 23rd international conference on Machine learning , 2006, ICML 2008.

[43]  Yaakov S. Weinstein,et al.  Syndrome measurement strategies for the [[7,1,3]] code , 2015, Quantum Inf. Process..

[44]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[45]  W. Marsden I and J , 2012 .

[46]  Andrew G. Glen,et al.  APPL , 2001 .

[47]  Michael E. Flatté,et al.  Manipulating quantum coherence in solid state systems , 2007 .

[48]  A. Korotkov,et al.  Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback , 2004, cond-mat/0411617.

[49]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[50]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[51]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[52]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  D. Steinberg,et al.  Technometrics , 2008 .

[54]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[57]  A. Wallraff,et al.  Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.

[58]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[59]  Austin G. Fowler,et al.  Surface code with decoherence: An analysis of three superconducting architectures , 2012, 1210.5799.

[60]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[61]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[62]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[63]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[64]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[65]  Reinhard Männer,et al.  Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: Parallel Problem Solving from Nature , 1994 .

[66]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[67]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[68]  Tughrul Arslan,et al.  Proceedings Of The 2000 Congress On Evolutionary Computation , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[69]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[70]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[71]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[72]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[73]  J. Martinis,et al.  High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers , 2013, 1301.1719.

[75]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[76]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[77]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[78]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[79]  B. M. Fulk MATH , 1992 .

[80]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[81]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[82]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[83]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[84]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.