Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

[1]  H. Schweizer,et al.  Cross-Resistance between Triclosan and Antibiotics inPseudomonas aeruginosa Is Mediated by Multidrug Efflux Pumps: Exposure of a Susceptible Mutant Strain to Triclosan Selects nfxB Mutants Overexpressing MexCD-OprJ , 2001, Antimicrobial Agents and Chemotherapy.

[2]  D. Daigle,et al.  mexEF-oprN Multidrug Efflux Operon of Pseudomonas aeruginosa: Regulation by the MexT Activator in Response to Nitrosative Stress and Chloramphenicol , 2010, Antimicrobial Agents and Chemotherapy.

[3]  M. Boustanshenas,et al.  Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients , 2013, GMS hygiene and infection control.

[4]  D. Provenzano,et al.  Vibrio cholerae RND Family Efflux Systems Are Required for Antimicrobial Resistance, Optimal Virulence Factor Production, and Colonization of the Infant Mouse Small Intestine , 2008, Infection and Immunity.

[5]  K. Bostian,et al.  Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. , 2006, Biochemical pharmacology.

[6]  G. Pessi,et al.  Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. , 2010, FEMS microbiology letters.

[7]  K. Ubukata,et al.  Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus , 1989, Antimicrobial Agents and Chemotherapy.

[8]  K. Echols,et al.  Role of Antiseptics in the Prevention of Surgical Site Infections , 2015, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[9]  E. Larson,et al.  Consumer antibacterial soaps: effective or just risky? , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[10]  J. Becker,et al.  The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules. , 2014, Molecular plant-microbe interactions : MPMI.

[11]  R. Hancock,et al.  Multidrug Efflux Systems Play an Important Role in the Invasiveness of Pseudomonas aeruginosa , 2002, The Journal of experimental medicine.

[12]  W. Watkins,et al.  Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. , 2001, Journal of molecular microbiology and biotechnology.

[13]  S. Levy,et al.  Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. , 1998, FEMS microbiology letters.

[14]  N. Masuda,et al.  Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[15]  S. Marathe,et al.  Biocides – resistance, cross-resistance mechanisms and assessment , 2013, Expert opinion on investigational drugs.

[16]  F. Baquero,et al.  Non-canonical mechanisms of antibiotic resistance , 1994, European Journal of Clinical Microbiology and Infectious Diseases.

[17]  H. Babiker,et al.  High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance Gene pfmdr1. , 2001, The Journal of infectious diseases.

[18]  L. Fernández,et al.  Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance , 2012, Clinical Microbiology Reviews.

[19]  C. Saavedra,et al.  SmvA, and not AcrB, is the major efflux pump for acriflavine and related compounds in Salmonella enterica serovar Typhimurium. , 2008, The Journal of antimicrobial chemotherapy.

[20]  I. Morrissey,et al.  Molecular Epidemiology of Multiresistant Streptococcus pneumoniae with Both erm(B)- and mef(A)-Mediated Macrolide Resistance , 2004, Journal of Clinical Microbiology.

[21]  L. Piddock,et al.  Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. , 2012, The Journal of antimicrobial chemotherapy.

[22]  M. Göttfert,et al.  The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR). , 2014, Molecular plant-microbe interactions : MPMI.

[23]  K. Konstantinidis,et al.  Trends between gene content and genome size in prokaryotic species with larger genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Hocquet,et al.  Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously , 2004, Antimicrobial Agents and Chemotherapy.

[25]  F. Baquero,et al.  Acquisition of antibiotic resistance plasmids in vivo by extraintestinal Salmonella spp. , 1987, The Journal of antimicrobial chemotherapy.

[26]  S. Sazawal,et al.  Chlorhexidine skin or cord care for prevention of mortality and infections in neonates. , 2015, The Cochrane database of systematic reviews.

[27]  F. Rojo,et al.  Overexpression of the Multidrug Efflux Pumps MexCD-OprJ and MexEF-OprN Is Associated with a Reduction of Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[28]  J Davies,et al.  Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Toyotaka Sato,et al.  Contribution of the AcrAB-TolC efflux pump to high-level fluoroquinolone resistance in Escherichia coli isolated from dogs and humans. , 2013, The Journal of veterinary medical science.

[30]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[31]  H. Nikaido Structure and mechanism of RND-type multidrug efflux pumps. , 2011, Advances in enzymology and related areas of molecular biology.

[32]  B. Demple,et al.  The redox‐regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator , 1998, The EMBO journal.

[33]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[34]  J. Hearst,et al.  The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals , 1996, Molecular microbiology.

[35]  T. Renau,et al.  MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: achieving activity in vivo through the use of alternative scaffolds. , 2003, Bioorganic & medicinal chemistry letters.

[36]  J. Martínez,et al.  The efflux pump inhibitor Phe-Arg-beta-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. , 2003, The Journal of antimicrobial chemotherapy.

[37]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[38]  Da-Neng Wang,et al.  Ins and outs of major facilitator superfamily antiporters. , 2008, Annual review of microbiology.

[39]  M. Saier,et al.  SMR-type multidrug resistance pumps. , 2001, Current opinion in drug discovery & development.

[40]  Lori A. S. Snyder,et al.  A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection , 2003, Infection and Immunity.

[41]  J. Martínez,et al.  The Biocide Triclosan Selects Stenotrophomonas maltophilia Mutants That Overproduce the SmeDEF Multidrug Efflux Pump , 2005, Antimicrobial Agents and Chemotherapy.

[42]  J. Martínez,et al.  Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. , 2008, Current drug targets.

[43]  Qijing Zhang,et al.  Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter jejuni Mutants , 2011, Applied and Environmental Microbiology.

[44]  L. Piddock,et al.  Bacterial efflux pump inhibitors from natural sources. , 2007, The Journal of antimicrobial chemotherapy.

[45]  K. Nishino,et al.  AcrB, AcrD, and MdtABC Multidrug Efflux Systems Are Involved in Enterobactin Export in Escherichia coli , 2014, PloS one.

[46]  K. Minamisawa,et al.  Involvement of the SmeAB Multidrug Efflux Pump in Resistance to Plant Antimicrobials and Contribution to Nodulation Competitiveness in Sinorhizobium meliloti , 2011, Applied and Environmental Microbiology.

[47]  J. Pagés,et al.  Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. , 2006, Current drug targets.

[48]  D. Hassett,et al.  Transcriptome Analysis of Pseudomonas aeruginosa after Interaction with Human Airway Epithelial Cells , 2004, Infection and Immunity.

[49]  C. Tribuddharat,et al.  Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. , 2014, Canadian journal of microbiology.

[50]  Can V. Tran,et al.  Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. , 2007, Biochimica et biophysica acta.

[51]  K. Young,et al.  Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants , 2014, Molecular microbiology.

[52]  I. Chopra New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. , 2002, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[53]  J. Maillard Bacterial target sites for biocide action , 2002, Journal of applied microbiology.

[54]  M. Webber,et al.  Inhibition of multidrug efflux as a strategy to prevent biofilm formation. , 2014, The Journal of antimicrobial chemotherapy.

[55]  A. T. Freitas,et al.  The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus , 2013, PloS one.

[56]  F. Corona,et al.  The intrinsic resistome of bacterial pathogens , 2013, Front. Microbiol..

[57]  Daniel Muller,et al.  Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles , 2015, Genome biology and evolution.

[58]  S. Levy,et al.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli , 1997, Journal of bacteriology.

[59]  M. Ullrich,et al.  The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. , 2004, Molecular plant-microbe interactions : MPMI.

[60]  T. Nakae,et al.  MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. , 2004, FEMS microbiology letters.

[61]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[62]  J. Martínez,et al.  A global view of antibiotic resistance. , 2009, FEMS microbiology reviews.

[63]  W. Shafer,et al.  Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Martínez The role of natural environments in the evolution of resistance traits in pathogenic bacteria , 2009, Proceedings of the Royal Society B: Biological Sciences.

[65]  B. Zechini,et al.  Inhibitors of multidrug resistant efflux systems in bacteria. , 2009, Recent patents on anti-infective drug discovery.

[66]  N. Love,et al.  Chlorinated phenol-induced physiological antibiotic resistance in Pseudomonas aeruginosa. , 2015, FEMS microbiology letters.

[67]  J. Hearst,et al.  Genes acrA and acrB encode a stress‐induced efflux system of Escherichia coli , 1995, Molecular microbiology.

[68]  A. Driessen,et al.  Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria , 2007, Microbiology and Molecular Biology Reviews.

[69]  H. Nikaido,et al.  Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein , 2003, Molecular microbiology.

[70]  H. Nitanai,et al.  MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. , 2007, Bioorganic & medicinal chemistry.

[71]  A. Yamaguchi,et al.  Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. , 2011, Microbiology.

[72]  F. Rojo,et al.  Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. , 1999, Environmental microbiology.

[73]  N. Love,et al.  Chlorinated phenols control the expression of the multidrug resistance efflux pump MexAB–OprM in Pseudomonas aeruginosa by interacting with NalC , 2011, Molecular microbiology.

[74]  J. Martínez,et al.  Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. , 2009, FEMS microbiology reviews.

[75]  S. Levy Active efflux, a common mechanism for biocide and antibiotic resistance , 2002, Journal of applied microbiology.

[76]  A. Russell Whither triclosan? , 2004, The Journal of antimicrobial chemotherapy.

[77]  A. D. Russell,et al.  Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. , 2003, The Journal of hospital infection.

[78]  P. Tulkens,et al.  Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. , 2003, The Journal of antimicrobial chemotherapy.

[79]  T. Renau,et al.  MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. , 2003, Bioorganic & medicinal chemistry letters.

[80]  Taufiq Rahman,et al.  Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump , 2014, MicrobiologyOpen.

[81]  G. Kaatz,et al.  Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. , 2008, Microbiology.

[82]  H. Nikaido Multidrug resistance in bacteria. , 2009, Annual review of biochemistry.

[83]  W. Shafer,et al.  The farAB‐encoded efflux pump mediates resistance of gonococci to long‐chained antibacterial fatty acids , 1999, Molecular microbiology.

[84]  P. Vargas,et al.  Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. , 2011, Molecular plant-microbe interactions : MPMI.

[85]  A. M. George,et al.  Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline , 1983, Journal of bacteriology.

[86]  Teresa M. Coque,et al.  What is a resistance gene? Ranking risk in resistomes , 2014, Nature Reviews Microbiology.

[87]  Ana Segura,et al.  Mechanisms of solvent tolerance in gram-negative bacteria. , 2002, Annual review of microbiology.

[88]  Angela Lee,et al.  Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[89]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[90]  H. Nikaido,et al.  Active efflux of bile salts by Escherichia coli , 1997, Journal of bacteriology.

[91]  H. Schweizer,et al.  The MexJK Efflux Pump of Pseudomonas aeruginosa Requires OprM for Antibiotic Efflux but Not for Efflux of Triclosan , 2002, Journal of bacteriology.

[92]  S. Tabata,et al.  Involvement of a Novel Genistein-Inducible Multidrug Efflux Pump of Bradyrhizobium japonicum Early in the Interaction with Glycine max (L.) Merr , 2013, Microbes and environments.

[93]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[94]  A. Cheng,et al.  Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. , 2012, The Journal of hospital infection.

[95]  E. Colt Inactivation of Antibiotics and the Dissemination of Resistance Genes , 2001 .

[96]  J. Fralick,et al.  Erwinia chrysanthemi tolC Is Involved in Resistance to Antimicrobial Plant Chemicals and Is Essential for Phytopathogenesis† , 2003, Journal of bacteriology.

[97]  G. Kaatz,et al.  Efflux-Related Resistance to Norfloxacin, Dyes, and Biocides in Bloodstream Isolates of Staphylococcus aureus , 2007, Antimicrobial Agents and Chemotherapy.

[98]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[99]  K. Poole,et al.  SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia , 2001, Antimicrobial Agents and Chemotherapy.

[100]  S. Minagawa,et al.  RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication , 2012, BMC Microbiology.

[101]  M H Saier,et al.  The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. , 1999, Journal of molecular microbiology and biotechnology.

[102]  M. Ullrich,et al.  NorM, an Erwinia amylovora Multidrug Efflux Pump Involved in In Vitro Competition with Other Epiphytic Bacteria , 2004, Applied and Environmental Microbiology.

[103]  P. Miller,et al.  The MarR Repressor of the Multiple Antibiotic Resistance (mar) Operon in Escherichia coli: Prototypic Member of a Family of Bacterial Regulatory Proteins Involved in Sensing Phenolic Compounds , 1995, Molecular medicine.

[104]  O. Sahin,et al.  CmeR Functions as a Transcriptional Repressor for the Multidrug Efflux Pump CmeABC in Campylobacter jejuni , 2005, Antimicrobial Agents and Chemotherapy.

[105]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[106]  D. Pletzer,et al.  Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora , 2014, BMC Microbiology.

[107]  A. Romero,et al.  The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia , 2011, PLoS pathogens.

[108]  F. Baquero,et al.  Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. , 2002, The Journal of antimicrobial chemotherapy.

[109]  Jun Lin,et al.  Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter jejuni , 2005, Journal of bacteriology.

[110]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[111]  X. Li,et al.  Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. , 1999, Canadian journal of microbiology.

[112]  J. Ramos,et al.  Antibiotic-Dependent Induction of Pseudomonas putida DOT-T1E TtgABC Efflux Pump Is Mediated by the Drug Binding Repressor TtgR , 2003, Antimicrobial Agents and Chemotherapy.

[113]  L. Piddock,et al.  The AcrAB–TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis , 2006, Cellular microbiology.

[114]  P. Rodríguez-Palenzuela,et al.  The ybiT Gene of Erwinia chrysanthemi Codes for a Putative ABC Transporter and Is Involved in Competitiveness against Endophytic Bacteria during Infection , 2002, Applied and Environmental Microbiology.

[115]  M. Ullrich,et al.  The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora , 2009, Microbial biotechnology.

[116]  M. Mihăşan,et al.  A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. , 2007, Microbiology.

[117]  J. Ramos,et al.  Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida , 2001, Molecular microbiology.

[118]  J. Martínez,et al.  Structural and Functional Analysis of SmeT, the Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF* , 2009, Journal of Biological Chemistry.

[119]  K. Poole Multidrug resistance in Gram-negative bacteria. , 2001, Current opinion in microbiology.

[120]  Fernando Baquero,et al.  Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance , 2002, Clinical Microbiology Reviews.

[121]  Hiroshi Nikaido,et al.  Multidrug resistance mechanisms: drug efflux across two membranes , 2000, Molecular microbiology.

[122]  R. Wise,et al.  Identification of an Efflux Pump Gene,pmrA, Associated with Fluoroquinolone Resistance inStreptococcus pneumoniae , 1999, Antimicrobial Agents and Chemotherapy.

[123]  M. Braoudaki,et al.  Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. , 2004, FEMS microbiology letters.

[124]  J. Martínez,et al.  RND multidrug efflux pumps: what are they good for? , 2013, Front. Microbio..

[125]  S. Levy,et al.  Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[126]  K. Poole,et al.  Influence of the TonB Energy-Coupling Protein on Efflux-Mediated Multidrug Resistance in Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[127]  D. Newman,et al.  The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa , 2006, Molecular microbiology.

[128]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[129]  L. Piddock Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria , 2006, Clinical Microbiology Reviews.

[130]  S. Levy,et al.  Regulation of acrAB expression by cellular metabolites in Escherichia coli. , 2014, The Journal of antimicrobial chemotherapy.

[131]  C. Kado,et al.  An Isoflavonoid-Inducible Efflux Pump in Agrobacterium tumefaciens Is Involved in Competitive Colonization of Roots , 1998, Journal of bacteriology.

[132]  M. Maurel,et al.  Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. , 2014, The Journal of antimicrobial chemotherapy.

[133]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[134]  G. Kaatz,et al.  Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. , 2012, International journal of antimicrobial agents.

[135]  A. Goffeau,et al.  Efflux-Mediated Antifungal Drug Resistance , 2009, Clinical Microbiology Reviews.

[136]  Douglas M. Warner,et al.  Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. , 2007, The Journal of infectious diseases.

[137]  P. Hedley,et al.  Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. , 2007, Molecular plant-microbe interactions : MPMI.

[138]  L. Piddock,et al.  Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. , 2007, The Journal of antimicrobial chemotherapy.

[139]  A. Fraise Biocide abuse and antimicrobial resistance--a cause for concern? , 2002, The Journal of antimicrobial chemotherapy.

[140]  R. Hancock,et al.  Creeping baselines and adaptive resistance to antibiotics. , 2011, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[141]  S. Christensen,et al.  Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. , 2012, The Journal of antimicrobial chemotherapy.

[142]  K. Poole,et al.  Induction of the MexXY Efflux Pump in Pseudomonas aeruginosa Is Dependent on Drug-Ribosome Interaction , 2005, Journal of bacteriology.

[143]  A. Yamaguchi,et al.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals , 2008, Journal of Biological Chemistry.

[144]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[145]  J. Ramos,et al.  Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere , 2007, Genome Biology.

[146]  B. Marquez Bacterial efflux systems and efflux pumps inhibitors. , 2005, Biochimie.

[147]  M. Avison,et al.  Coordinate Hyperproduction of SmeZ and SmeJK Efflux Pumps Extends Drug Resistance in Stenotrophomonas maltophilia , 2012, Antimicrobial Agents and Chemotherapy.

[148]  Yujiong Wang,et al.  Total Alkaloids of Sophorea alopecuroides‐induced Down‐regulation of AcrAB‐ToLC Efflux Pump Reverses Susceptibility to Ciprofloxacin in Clinical Multidrug Resistant Escherichia coli isolates , 2012, Phytotherapy research : PTR.

[149]  T. Tsuchiya,et al.  Multidrug efflux transporters in the MATE family. , 2009, Biochimica et biophysica acta.

[150]  J. Martínez,et al.  Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia , 2015, PloS one.

[151]  F. Rojo,et al.  Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. , 2012, Environmental microbiology.

[152]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[153]  I. Morrissey,et al.  Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms , 2014, PloS one.

[154]  T. Tsuchiya,et al.  Functional Cloning and Characterization of a Multidrug Efflux Pump, MexHI-OpmD, from a Pseudomonas aeruginosa Mutant , 2003, Antimicrobial Agents and Chemotherapy.

[155]  J. Martínez,et al.  A Function of SmeDEF, the Major Quinolone Resistance Determinant of Stenotrophomonas maltophilia, Is the Colonization of Plant Roots , 2014, Applied and Environmental Microbiology.

[156]  T. Tsuchiya,et al.  Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. , 2003, The Journal of antimicrobial chemotherapy.

[157]  B. Demple,et al.  Redox Signal Transduction: Mutations Shifting [2Fe-2S] Centers of the SoxR Sensor-Regulator to the Oxidized Form , 1997, Cell.

[158]  G. Tegos,et al.  Multidrug Pump Inhibitors Uncover Remarkable Activity of Plant Antimicrobials , 2002, Antimicrobial Agents and Chemotherapy.

[159]  R. Skurray,et al.  Transcriptional regulation of multidrug efflux pumps in bacteria. , 2001, Seminars in cell & developmental biology.

[160]  O. Sahin,et al.  Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni , 2003, Infection and Immunity.