Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance

Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of high-resolution quantitative models of the subsurface at various scales. Full modelling and inversion of visco-elastic waves from multiple seismic sources allow for the recovering of different physical parameters, although they remain computationally challenging tasks. An efficient massively parallel, frequency-domain FWI algorithm is implemented here on large-scale distributed-memory platforms for imaging two-dimensional visco-elastic media. The resolution of the elastodynamic equations, as the forward problem of the inversion, is performed in the frequency domain on unstructured triangular meshes, using a low-order finite element discontinuous Galerkin method. The linear system resulting from discretization of the forward problem is solved with a parallel direct solver. The inverse problem, which is presented as a non-linear local optimization problem, is solved in parallel with a quasi-Newton method, and this allows for reliable estimation of multiple classes of visco-elastic parameters. Two levels of parallelism are implemented in the algorithm, based on message passing interfaces and multi-threading, for optimal use of computational time and the core-memory resources available on modern distributed-memory multi-core computational platforms. The algorithm allows for imaging of realistic targets at various scales, ranging from near-surface geotechnic applications to crustal-scale exploration.

[1]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[2]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[3]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[4]  W. A. Mulder,et al.  Simultaneous Imaging of Velocity and Attenuation Perturbations from Seismic Data Is Nearly Impossible , 2009 .

[5]  Seungwon Ko,et al.  Traveltime and amplitude calculations using the damped wave solution , 2002 .

[6]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[7]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[8]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[9]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[10]  M. Remaki A new finite volume scheme for solving Maxwell’s system , 2000 .

[11]  Romain Brossier,et al.  Two-dimensional Seismic Imaging of the Valhall Model From Synthetic OBC Data By Frequency Domain Elastic Full-waveform Inversion , 2009 .

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[14]  R. G. Pratt,et al.  Waveform Tomography of 2-D Seismic Data in the Canadian Foothills – Data Preconditioning by Exponential Time-damping , 2009 .

[15]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[16]  Changsoo Shin,et al.  Waveform inversion using a logarithmic wavefield , 2006 .

[17]  Jean Virieux,et al.  Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough , 2006 .

[18]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[19]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications , 2001 .

[20]  M. N. Toksoz,et al.  Seismic wave attenuation , 1981 .

[21]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[22]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[23]  BrossierR. Two-dimensional frequency-domain visco-elastic full waveform inversion , 2011 .

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[26]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[27]  Gerard T. Schuster,et al.  Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .

[28]  W. Garvin,et al.  Exact transient solution of the buried line source problem , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  J. Munns,et al.  The Valhall Field: a geological overview , 1985 .

[30]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory , 2003 .

[31]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[32]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[33]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[34]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[35]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[36]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[37]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[38]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 1: Algorithm , 2009, Comput. Geosci..

[39]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[40]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[41]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[42]  S. Operto,et al.  lastic frequency-domain full-waveform inversion , 2009 .

[43]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[44]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[45]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[46]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[47]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 2: Numerical examples and scalability analysis , 2009, Computational Geosciences.

[48]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[49]  T. Sears,et al.  Elastic full waveform inversion of multi‐component OBC seismic data , 2008 .

[50]  R. G. Pratt,et al.  Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data , 2007 .

[51]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[52]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[53]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[54]  L. Fezoui,et al.  A high-order Discontinuous Galerkin method for the seismic wave propagation , 2009 .

[55]  José M. Carcione,et al.  Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures , 1997, Bulletin of the Seismological Society of America.

[56]  Erik H. Saenger,et al.  Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves , 2006 .

[57]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[58]  B. Kennett,et al.  AN ALTERNATIVE STRATEGY FOR NON‐LINEAR INVERSION OF SEISMIC WAVEFORMS1 , 1991 .

[59]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .