Inflammatory and glycolytic programs underpin a primed blood neutrophil state in patients with pneumonia

[1]  T. van der Poll,et al.  Intracellular pyruvate levels positively correlate with cytokine production capacity in tolerant monocytes from patients with pneumonia. , 2022, Biochimica et biophysica acta. Molecular basis of disease.

[2]  R. Houtkooper,et al.  Polar metabolomics in human muscle biopsies using a liquid-liquid extraction and full-scan LC-MS , 2022, STAR protocols.

[3]  A. Emwas,et al.  Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways , 2022, Frontiers in Pharmacology.

[4]  Xiaoli Wang,et al.  Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis , 2022, Critical Care.

[5]  T. van der Poll,et al.  An epigenetic and transcriptomic signature of immune tolerance in human monocytes through multi-omics integration , 2021, Genome medicine.

[6]  A. von Kriegsheim,et al.  Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism. , 2021, The Journal of clinical investigation.

[7]  J. Filep,et al.  Roles of neutrophil granule proteins in orchestrating inflammation and immunity , 2021, The FEBS journal.

[8]  K. Majidzadeh-A,et al.  Gene co-expression network analysis reveals immune cell infiltration as a favorable prognostic marker in non-uterine leiomyosarcoma , 2021, Scientific Reports.

[9]  T. van der Poll,et al.  Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro , 2021, The Journal of Immunology.

[10]  P. Carmeliet,et al.  Neutrophils Fuel Effective Immune Responses through Gluconeogenesis and Glycogenesis , 2020, Cell metabolism.

[11]  Eun Sug Park,et al.  Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 , 2020, Lancet.

[12]  T. van der Poll,et al.  Concurrent Immune Suppression and Hyperinflammation in Patients With Community-Acquired Pneumonia , 2020, Frontiers in Immunology.

[13]  A. Devin,et al.  Neutrophil Metabolic Shift during Their Lifecycle: Impact on Their Survival and Activation , 2019, International journal of molecular sciences.

[14]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[15]  P. Kubes,et al.  The Neutrophil's Role During Health and Disease. , 2019, Physiological reviews.

[16]  L. Quinton,et al.  Integrative Physiology of Pneumonia. , 2018, Physiological reviews.

[17]  Y. Lou,et al.  Characterization of transcriptional modules related to fibrosing-NAFLD progression , 2017, Scientific Reports.

[18]  Thomas A. Hooven,et al.  Pneumonia , 2017, Seminars in Fetal and Neonatal Medicine.

[19]  Anna Rautanen,et al.  Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study , 2016, The Lancet. Respiratory medicine.

[20]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[21]  E. O. López-Villegas,et al.  Metabolic requirements for neutrophil extracellular traps formation , 2015, Immunology.

[22]  Chung-Yen Lin,et al.  cytoHubba: identifying hub objects and sub-networks from complex interactome , 2014, BMC Systems Biology.

[23]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[24]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[25]  G. Viegi,et al.  Risk factors for community-acquired pneumonia in adults in Europe: a literature review , 2013, Thorax.

[26]  N. Heegaard,et al.  Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors , 2013, Journal of leukocyte biology.

[27]  Frederick Klauschen,et al.  A Systems Analysis Identifies a Feedforward Inflammatory Circuit Leading to Lethal Influenza Infection , 2013, Cell.

[28]  N. Schnitzler,et al.  CD66b overexpression and homotypic aggregation of human peripheral blood neutrophils after activation by a gram‐positive stimulus , 2012, Journal of leukocyte biology.

[29]  A. Zychlinsky,et al.  Neutrophil function: from mechanisms to disease. , 2012, Annual review of immunology.

[30]  Hans Hengartner,et al.  Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections , 2009, Proceedings of the National Academy of Sciences.

[31]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[32]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[33]  S. Sriskandan,et al.  The immunology of sepsis , 2008, The Journal of pathology.

[34]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[35]  Richard B. Johnston,et al.  Chronic Granulomatous Disease: Report on a National Registry of 368 Patients , 2000, Medicine.

[36]  T. Herlin,et al.  Energy metabolism of human neutrophils during phagocytosis. , 1982, The Journal of clinical investigation.

[37]  L. Hedges Distribution Theory for Glass's Estimator of Effect size and Related Estimators , 1981 .