Design of Non-Fragile H∞ Controller for Active Vehicle Suspensions

In this paper we present an approach to design the non-fragile H ∞ controller for active vehicle suspensions. A quarter-car model with active suspension system is considered in this paper. By suitably formulating the sprung mass acceleration, suspension deflection and tire deflection as the optimization object and considering a priori norm-bounded controller gain variations, the non-fragile state-feedback H ∞ controller can be obtained by solving a linear matrix inequality. The designed controller not only can achieve the optimal performance for active suspensions but also preserves the closed-loop stability in spite of the controller gain variations.

[1]  P. Dorato,et al.  Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[2]  Hoang Duong Tuan,et al.  Nonlinear H∞ Control of Active Suspension , 1996 .

[3]  D. Hrovat,et al.  Survey of Advanced Suspension Developments and Related Optimal Control Applications, , 1997, Autom..

[4]  Z. Abduljabbar,et al.  LINEAR QUADRATIC GAUSSIAN CONTROL OF A QUARTER-CAR SUSPENSION , 1999 .

[5]  Dae Sung Joo,et al.  Sliding mode neural network inference fuzzy logic control for active suspension systems , 2002, IEEE Trans. Fuzzy Syst..

[6]  Guang-Hong Yang,et al.  Nonfragile H∞ Output Feedback Controller Design for Linear Systems* , 2003 .

[7]  Charles E. M. Pearce,et al.  Performance Index for a Preview Active Suspension Applied to a Quarter-Car Model , 2001 .

[8]  Nader Jalili,et al.  Optimum Active Vehicle Suspensions With Actuator Time Delay , 2001 .

[9]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[10]  Jung-Shan Lin,et al.  Nonlinear design of active suspensions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[11]  M. M'Saad,et al.  On the design of active suspension system by H/sub /spl infin// and mixed H/sub 2//H/sub /spl infin//: An LMI approach , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Lihua Xie,et al.  H ∞ filtering for linear periodic systems with parameter uncertainty , 1991 .

[13]  Fei Liu,et al.  Robust H/sub /spl infin// control for time-delay systems with additive controller uncertainty , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[14]  Gary J. Balas,et al.  Road adaptive active suspension design using linear parameter-varying gain-scheduling , 2002, IEEE Trans. Control. Syst. Technol..

[15]  A. Eskandarian,et al.  Predictive Time-Delay Control of Vehicle Suspensions , 2001 .

[16]  V. Observation Coefficient,et al.  Comments on "Robust, Fragile, or Optimal?" , 1998 .

[17]  Kisaburo Hayakawa,et al.  Application of H∞ control to active suspension systems , 1994, Autom..

[18]  Kisaburo Hayakawa,et al.  Robust H∞-output feedback control of decoupled automobile active suspension systems , 1999, IEEE Trans. Autom. Control..

[19]  D. Mehdi,et al.  On the Design of Active Suspension System by H, and mixed H2IH,: An LMI Approach , 2000 .

[20]  Shankar P. Bhattacharyya,et al.  Comments on "Robust, fragile, or optimal?" [with reply] , 1998, IEEE Trans. Autom. Control..

[21]  Gary J. Balas,et al.  Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-Varying Control Synthesis , 2000 .

[22]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[23]  Wen Tan,et al.  A direct composite H/sub /spl infin// controller design for a two-time-scale active suspension system , 1996, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation.