A Framework for Filtering News and Managing Distributed Data

With the development and di usion of the Internet worldwide connection, a large amount of information is available to the users. Methods of information ltering and fetching are then required. This paper presents two approaches. The rst concerns the information ltering system ProFile based on an adaptation of the generalized probabilistic model of information retrieval. ProFile lters the netnews and uses a scale of 11 prede ned values of relevance. ProFile allows the user to update on{line the pro le and to check the discrepancy between the assessment and the prediction of relevance of the system. The second concerns ABIS, an intelligent agent for supporting users in ltering data from distributed and heterogeneous archives and repositories. ABIS minimizes user's e ort in selecting the huge amount of available documents. The ltering engine memorizes both user preferences and past situations. ABIS compares documents with the past situations and nds the similarity scores on the basis of a memory-based reasoning approach.

[1]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[2]  Yoav Shoham,et al.  Learning Information Retrieval Agents: Experiments with Automated Web Browsing , 1995 .

[3]  Fredrik Kilander A Brief Comparison of News Filtering Software , 1995 .

[4]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[5]  Pattie Maes,et al.  Learning Interface Agents , 1993, AAAI.

[6]  Daniela D'Aloisi,et al.  An Integrated System for Filtering News and Managing Distributed Data , 1996 .

[7]  Tom M. Mitchell,et al.  A Personal Learning Apprentice , 1992, AAAI.

[8]  Dr P M E De,et al.  Information Retrieval in the World − Wide Web : Making Client − based searching feasible , 2022 .

[9]  Mark D. Dunlop The effect of accessing nonmatching documents on relevance feedback , 1997, TOIS.

[10]  Oren Etzioni,et al.  A softbot-based interface to the Internet , 1994, CACM.

[11]  IJsbrand Jan Aalbersberg,et al.  Incremental relevance feedback , 1992, SIGIR '92.

[12]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[13]  Fabio Crestani,et al.  A Learning System for Selective Dissemination of Information , 1997, IJCAI.

[14]  Fabio Crestani,et al.  Probabilistic Learning for Information Filtering , 1997, RIAO.

[15]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[16]  Donna K. Harman,et al.  Overview of the Fifth Text REtrieval Conference (TREC-5) , 1996, TREC.

[17]  W. Bruce Croft,et al.  Searching distributed collections with inference networks , 1995, SIGIR '95.

[18]  C. J. van Rijsbergen,et al.  An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.

[19]  Johann H. Schlichter,et al.  On Combining the Knowledge of Heterogeneous Information Repositories , 1996, J. Univers. Comput. Sci..

[20]  Daniela D'Aloisi,et al.  The Info Agent: an Interface for Supporting Users in Intelligent Retrieval , 1995 .

[21]  Hector Garcia-Molina,et al.  SIFT - a Tool for Wide-Area Information Dissemination , 1995, USENIX.

[22]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[23]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.