Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25

The interaction of a spatially developing adiabatic boundary layer flow at M∞=2.25 and Reθ=3725 with an impinging oblique shock wave (β=33.2°) is analyzed by means of direct numerical simulation of the compressible Navier-Stokes equations. Under the selected flow conditions the incoming boundary layer undergoes mild separation due to the adverse pressure gradient. Coherent structures are shed near the average separation point and the flow field exhibits large-scale low-frequency unsteadiness. The formation of the mixing layer is primarily responsible for the amplification of turbulence, which relaxes to an equilibrium state past the interaction. Complete equilibrium is attained in the inner part of the boundary layer, while in the outer region the relaxation process is incomplete. Far from the interaction zone, turbulence exhibits a universal behavior and it shows similarities with the incompressible case. The interaction of the coherent structures with the incident shock produces acoustic waves that prop...

[1]  Sergio Pirozzoli,et al.  Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures , 2004 .

[2]  C. G. Speziale,et al.  Critical Evaluation of Two-Equation Models for Near-Wall Turbulence , 1992 .

[3]  Gary S. Settles,et al.  Hypersonic Shock/Boundary-Layer Interaction Database , 1991 .

[4]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[5]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[6]  Parviz Moin,et al.  The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation , 1998, Journal of Fluid Mechanics.

[7]  J. Rossiter Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds , 1964 .

[8]  Alexander J. Smits,et al.  Turbulent Shear Layers in Supersonic Flow , 1996 .

[9]  Flint O. Thomas,et al.  On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions , 1994 .

[10]  Sanjiva K. Lele,et al.  A numerical investigation of sound generation in supersonic jet screech , 1999 .

[11]  Analysis of hypersonic shock-wave laminar boundary-layer interaction phenomena , 1996 .

[12]  Parviz Moin,et al.  Direct numerical simulation of a separated turbulent boundary layer , 1998 .

[13]  Bernardus J. Geurts,et al.  Direct and Large-Eddy Simulation V , 2004 .

[14]  V. C. Patel,et al.  Turbulence models for near-wall and low Reynolds number flows - A review , 1985 .

[15]  A. Walz,et al.  Boundary layers of flow and temperature , 1969 .

[16]  Qinling Li,et al.  DNS of an oblique shock wave impinging upon a turbulent boundary layer , 2004 .

[17]  T. Horton Influence of differences in thermochemistry data upon high-temperature gas composition , 1971 .

[18]  Sergio Pirozzoli,et al.  Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25 , 2004 .

[19]  H. Laurent Turbulence d'une interaction onde de choc/couche limite sur une paroi plane adiabatique ou chauffée , 1996 .

[20]  Sergio Pirozzoli,et al.  Shock-Wave–Vortex Interactions: Shock and Vortex Deformations, and Sound Production , 2000 .

[21]  C. Rowley,et al.  On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities , 2002, Journal of Fluid Mechanics.

[22]  David S. Dolling,et al.  Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? , 2001 .

[23]  C. Haddad Instationnarités, mouvements d'onde de choc et tourbillons à grandes échelles dans une interaction onde de choc / couche limite avec décollement , 2005 .

[24]  Yiannis Andreopoulos,et al.  Shock Wave—Turbulence Interactions , 2000 .

[25]  F. White Viscous Fluid Flow , 1974 .

[26]  M. S. Chong,et al.  Turbulence structures of wall-bounded shear flows found using DNS data , 1998, Journal of Fluid Mechanics.

[27]  Parviz Moin,et al.  Interaction of isotropic turbulence with shock waves: effect of shock strength , 1997, Journal of Fluid Mechanics.

[28]  N. Adams,et al.  Direct simulation of turbulent supersonic boundary layers by an extended temporal approach , 2001, Journal of Fluid Mechanics.

[29]  P. Sagaut,et al.  Large-eddy simulation of the shock/boundary layer interaction , 2001 .

[30]  Nikolaus A. Adams,et al.  Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685 , 2000, Journal of Fluid Mechanics.

[31]  A. Fonteneau,et al.  Goertler instability of a hypersonic boundary layer , 1993 .

[32]  F. Fahy,et al.  Mechanics of flow-induced sound and vibration , 1989 .