The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal

[1]  O. Belykh,et al.  Analysis of bacterial communities of two Lake Baikal endemic sponge species , 2014, Microbiology.

[2]  Dawoon Jung,et al.  Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. , 2014, FEMS microbiology ecology.

[3]  J. Faghri,et al.  Comparison of three phenotypic and deoxyribonucleic acid extraction methods for isolation and Identification of Nocardia spp , 2014, Advanced biomedical research.

[4]  O. Kaluzhnaya,et al.  Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia , 2014, Russian Journal of Genetics.

[5]  S. Lumyong,et al.  Termite Nests as an Abundant Source of Cultivable Actinobacteria for Biotechnological Purposes , 2014, Microbes and environments.

[6]  S. Donadio,et al.  Discovering new bioactive molecules from microbial sources , 2014, Microbial biotechnology.

[7]  U. Hentschel,et al.  Diversity, abundance and natural products of marine sponge-associated actinomycetes. , 2014, Natural product reports.

[8]  A. Alvin,et al.  Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds , 2014, Microbiological Research.

[9]  A. A. Madden,et al.  Actinomycetes with Antimicrobial Activity Isolated from Paper Wasp (Hymenoptera: Vespidae: Polistinae) Nests , 2013, Environmental entomology.

[10]  N. Ravin,et al.  The Structure of Microbial Community and Degradation of Diatoms in the Deep Near-Bottom Layer of Lake Baikal , 2013, PloS one.

[11]  R. Hill,et al.  Biodiversity of Actinomycetes Associated with Caribbean Sponges and Their Potential for Natural Product Discovery , 2013, Marine Biotechnology.

[12]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[13]  O. Kaluzhnaya,et al.  Diversity of 16S rRNA genes in metagenomic community of the freshwater sponge Lubomirskia baicalensis , 2012, Russian Journal of Genetics.

[14]  Sandie M. Degnan,et al.  Genomic insights into the marine sponge microbiome , 2012, Nature Reviews Microbiology.

[15]  D. Cowan,et al.  Biogeography of bacterial communities in hot springs: a focus on the actinobacteria , 2012, Extremophiles.

[16]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[17]  C. Nikapitiya Bioactive secondary metabolites from marine microbes for drug discovery. , 2012, Advances in food and nutrition research.

[18]  R. Costa,et al.  Evidence for Selective Bacterial Community Structuring in the Freshwater Sponge Ephydatia fluviatilis , 2012, Microbial Ecology.

[19]  A. Pringle,et al.  Bacterial Diversity across Individual Lichens , 2011, Applied and Environmental Microbiology.

[20]  G. McCormack,et al.  Phylogenetic diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis , 2011 .

[21]  Bernd Schneider,et al.  Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. , 2010, Nature chemical biology.

[22]  Seogchan Kang,et al.  Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum , 2010, Molecular microbiology.

[23]  H. Jenke-Kodama,et al.  Evolution of metabolic diversity: insights from microbial polyketide synthases. , 2009, Phytochemistry.

[24]  Oleg V. Tsodikov,et al.  Survival in Nuclear Waste, Extreme Resistance, and Potential Applications Gleaned from the Genome Sequence of Kineococcus radiotolerans SRS30216 , 2008, PloS one.

[25]  Lei Zhang,et al.  Aeromicrobium flavum sp. nov., isolated from air. , 2008, International journal of systematic and evolutionary microbiology.

[26]  Arnold L. Demain,et al.  Contributions of Microorganisms to Industrial Biology , 2008, Molecular biotechnology.

[27]  Ying Huang,et al.  Streptomyces radiopugnans sp. nov., a radiation-resistant actinomycete isolated from radiation-polluted soil in China. , 2007, International journal of systematic and evolutionary microbiology.

[28]  J. George Synthetic studies on the azinothricin family of antitumour antibiotics , 2007 .

[29]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[30]  V. Parfenova,et al.  Antagonistic activity of actinomycetes of Lake Baikal , 2006, Applied Biochemistry and Microbiology.

[31]  V. Parfenova,et al.  The Biodiversity of Actinomycetes in Lake Baikal , 2002, Microbiology.

[32]  Eleonor A. Tendencia Disk Diffusion Method , 2004 .

[33]  E. A. Tendencia,et al.  Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment , 2004 .

[34]  R. Summerbell,et al.  corrigendum: Fungus-growing ants use antibiotic-producing bacteria to control garden parasites , 2003, Nature.

[35]  Peter Willett,et al.  Evaluation of Similarity Measures for Searching the Dictionary of Natural Products Database , 2003, J. Chem. Inf. Comput. Sci..

[36]  Dudley H. Williams,et al.  Isolation and Structure Elucidation of Chlorofusin, a Novel p53-MDM2 Antagonist from a Fusarium sp. [J. Am. Chem. Soc. 2001, 123, 554−560]. , 2002 .

[37]  T. Iglesias,et al.  Total synthesis and absolute configuration of minalemine A, a guanidine peptide from the marine tunicate Didemnum rodriguesi. , 2001, The Journal of organic chemistry.

[38]  D. Williams,et al.  Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. , 2001, Journal of the American Chemical Society.

[39]  T. Kieser Practical streptomyces genetics , 2000 .

[40]  James A. Scott,et al.  Fungus-growing ants use antibiotic-producing bacteria to control garden parasites , 1999, Nature.

[41]  C. Jiménez,et al.  Minalemines A—F: Sulfamic Acid Peptide Guanidine Derivatives Isolated from the Marine Tunicate Didemnun rodriguesi. , 1998 .

[42]  Olʹga Mikhaĭlovna Kozhova,et al.  Lake Baikal: Evolution and biodiversity , 1998 .

[43]  W. Strohl INDUSTRIAL ANTIBIOTICS : TODAY AND THE FUTURE , 1997 .

[44]  J. Cai,et al.  Synthetic studies on the azinothricin family of antitumour antibiotics. 5. Asymmetric synthesis of two activated esters for the northern sector of A83586C , 1996 .

[45]  K. Iwatsuki [Evolution and biodiversity]. , 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[46]  M. Nakagawa,et al.  Structural studies on new depsipeptide antibiotics, variapeptin and citropeptin. , 1990, The Journal of antibiotics.

[47]  M. Nakagawa,et al.  A new depsipeptide antibiotic, variapeptin. , 1990, Agricultural and biological chemistry.

[48]  W. E. Gledhill,et al.  Predominant Catalase-negative Soil Bacteria. III. Agromyces, gen. n., Microorganisms Intermediary to Actinomyces and Nocardia. , 1969, Applied microbiology.