Expected Seismicity and the Seismic Noise Environment of Europa

Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europa's ice shell by assuming each model follows a Gutenberg‐Richter relationship with varying parameters. A range of cumulative seismic moment release between 1016 and 1018 Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earth's moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self‐consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self‐noise floor of high‐frequency geophones but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by ∼50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.

[1]  M. Golombek,et al.  Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars , 2017 .

[2]  G. Manucharyan,et al.  The influence of meridional ice transport on Europa's ocean stratification and heat content , 2017 .

[3]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[4]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[5]  David Lumley,et al.  Retrieval of the P wave reflectivity response from autocorrelation of seismic noise: Jakarta Basin, Indonesia , 2017 .

[6]  Evgeny A. Podolskiy,et al.  Cryoseismology , 2016 .

[7]  R. Lorenz,et al.  Vital Signs: Seismology of ocean worlds , 2016, 1610.10067.

[8]  Huafeng Liu,et al.  A Silicon Seismic Package (SSP) for Planetary Geophysics , 2016 .

[9]  K. Koper,et al.  High‐resolution probing of inner core structure with seismic interferometry , 2015 .

[10]  B. Kennett Lithosphere–asthenosphere P-wave reflectivity across Australia , 2015 .

[11]  Simon C. Stähler,et al.  Instaseis: instant global seismograms based on a broadband waveform database , 2015 .

[12]  Lion Krischer,et al.  ObsPy: a bridge for seismology into the scientific Python ecosystem , 2015 .

[13]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[14]  Xiaodong Song,et al.  Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda , 2015 .

[15]  J. Blanchette-Guertin,et al.  Modeling seismic energy propagation in highly scattering environments , 2015 .

[16]  K. Retherford,et al.  Linking Europa's plume activity to tides, tectonics, and liquid water , 2014, 1502.06854.

[17]  M. Beuthe Tides on Europa: The membrane paradigm , 2014, 1410.4735.

[18]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[19]  Christophe Sotin,et al.  Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice , 2014 .

[20]  Robert T. Pappalardo,et al.  Europa Clipper Mission Concept: Exploring Jupiter's Ocean Moon , 2014 .

[21]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[22]  Z. Zhan,et al.  Ambient noise correlation on the Amery Ice Shelf, East Antarctica , 2013 .

[23]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[24]  M. Nettles,et al.  Spatial and temporal variations in Greenland glacial‐earthquake activity, 1993–2010 , 2012 .

[25]  Sridhar Anandakrishnan,et al.  Seismic attenuation in glacial ice: A proxy for englacial temperature , 2012 .

[26]  I. Tibuleac,et al.  Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations , 2012 .

[27]  Andrew J. Michael,et al.  Listen, Watch, Learn: SeisSound Video Products , 2012 .

[28]  Charles R. Hutt,et al.  Self-Noise Models of Seismic Instruments , 2009 .

[29]  R. Widmer-Schnidrig,et al.  The horizontal hum of the Earth: A global background of spheroidal and toroidal modes , 2008 .

[30]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[31]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[32]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[33]  C. Frohlich,et al.  Possible extra-Solar-System cause for certain lunar seismic events , 2006 .

[34]  Nicholas C. Makris,et al.  Mechanics of tidally driven fractures in Europa's ice shell , 2005 .

[35]  F. Nimmo,et al.  Normal faulting on Europa: implications for ice shell properties , 2005 .

[36]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[37]  Barbara Romanowicz,et al.  Excitation of Earth's continuous free oscillations by atmosphere–ocean–seafloor coupling , 2004, Nature.

[38]  Daniel E. McNamara,et al.  Ambient Noise Levels in the Continental United States , 2004 .

[39]  Janusz Eluszkiewicz,et al.  Dim prospects for radar detection of Europa's ocean , 2004 .

[40]  Gabriel Tobie,et al.  Tidally heated convection: Constraints on Europa's ice shell thickness , 2003 .

[41]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[42]  A. Paul,et al.  Long-Range Correlations in the Diffuse Seismic Coda , 2003, Science.

[43]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[44]  D. Campbell,et al.  Icy Galilean Satellites: Modeling Radar Reflectivities as a Coherent Backscatter Effect , 2001 .

[45]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[46]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[47]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[48]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[49]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[50]  B. C. Edwards,et al.  Radar Detectability of a Subsurface Ocean on Europa , 1998 .

[51]  Fukao,et al.  Earth's background free oscillations , 1998, Science.

[52]  Peter W. Rodgers,et al.  Self-noise spectra for 34 common electromagnetic seismometer/preamplifier pairs , 1994, Bulletin of the Seismological Society of America.

[53]  C. Frohlich,et al.  Teleseismic b values; Or, much ado about 1.0 , 1993 .

[54]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[55]  J. Oberst Unusually high stress drops associated with shallow moonquakes , 1987 .

[56]  P. Strick,et al.  The cerebellum: the cerebellum and neural control. , 1985, Science.

[57]  H. Sato Attenuation of S waves in the lithosphere due to scattering by its random velocity structure , 1982 .

[58]  M. Toksoz,et al.  Lunar seismology : the internal structure of the moon. , 1981 .

[59]  P. A. Penzo,et al.  Voyager mission description , 1977 .

[60]  H. Kanamori The energy release in great earthquakes , 1977 .

[61]  Y. Nakamura,et al.  HFT events: Shallow moonquakes?☆ , 1977 .

[62]  Yosio Nakamura,et al.  Lunar seismicity, structure, and tectonics , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[63]  Jon F. Claerbout,et al.  Synthesis of a layered medium from its acoustic transmission response , 1968 .

[64]  A. P. Crary Seismic studies on Fletcher's Ice Island, T‐3 , 1954 .

[65]  M. Longuet-Higgins A theory of the origin of microseisms , 1950, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[66]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[67]  D. Schroeder,et al.  Bright prospects for radar detection of Europa’s ocean , 2017 .

[68]  L. Margerin,et al.  Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith , 2017 .

[69]  D. Blankenship,et al.  Ocean-driven heating of Europa/'s icy shell at low latitudes , 2014 .

[70]  T. Murray,et al.  Seismic wave attenuation in the uppermost glacier ice of Storglaciären, Sweden , 2010, Journal of Glaciology.

[71]  Bonnie J. Buratti,et al.  Surface Properties, Regolith, and Landscape Degradation , 2009 .

[72]  J. Laskar,et al.  Rotational Dynamics of Europa , 2009 .

[73]  R. Greenberg,et al.  Cycloidal cracks on Europa: Improved modeling and non-synchronous rotation implications , 2007 .

[74]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[75]  S. Gorevan,et al.  PROBING EUROPA ’ S INTERIOR WITH NATURAL SOUND SOURCES , 2003 .

[76]  M. Kivelson,et al.  Measurements: A Stronger Case for a Subsurface Ocean at Europa , 2000 .

[77]  Christopher T. Russell,et al.  The Galileo mission , 1992 .

[78]  Journal of Geophysical Research: Planets Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds , 2022 .