Evolution of Lightweight Structures

[1]  S. McNaughton,et al.  Silica as a Defense against Herbivory and a Growth Promotor in African Grasses , 1985 .

[2]  M. Hildebrand Diatoms, biomineralization processes, and genomics. , 2008, Chemical reviews.

[3]  H. Matsumoto,et al.  Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition , 2004, Plant and Soil.

[4]  S. A. Navasero,et al.  Effects of silica and nitrogen supply on some leaf characters of the rice plant , 1969, Plant and Soil.

[5]  P. Kaufman,et al.  Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. , 1996, Journal of experimental botany.

[6]  E. Takahashi,et al.  Chapter 2 Silicon as a beneficial element for crop plants , 2001 .

[7]  C. Nascimento,et al.  Silicon Effects on Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil , 2009 .

[8]  N. Grossmann,et al.  Stereom differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins , 2012 .

[9]  R. R. Strathmann The role of spines in preventing structural damage to echinoid tests , 1981, Paleobiology.

[10]  A. J. Huerta,et al.  Silicon-induced cadmium resistance in rice (Oryza sativa) , 2008 .

[11]  Peter Gorny,et al.  Zur funktionellen anatomie der seeigelzähne (Echinodermata, Echinoidea) , 1973, Zeitschrift für Morphologie der Tiere.

[12]  Notburga Gierlinger,et al.  Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging , 2007, Planta.

[13]  S. Hartley,et al.  Herbivore specific induction of silica-based plant defences , 2007, Oecologia.

[14]  F. Hotchkiss A “rays-as-appendages” model for the origin of pentamerism in echinoderms , 1998, Paleobiology.

[15]  R. Cowen Crinoid arms and banana plantations: an economic harvesting analogy , 1981, Paleobiology.

[16]  R. Emlet ECHINODERM CALCITE: A MECHANICAL ANALYSIS FROM LARVAL SPICULES , 1982 .

[17]  Claus Mattheck,et al.  In Seilen denken. Einfache Anleitung für naturnahes Konstruieren , 2004 .

[18]  J. D. Del Castillo,et al.  The attachment of collagenous ligament to stereom in primary spines of the sea-urchin, Eucidaris tribuloides. , 1990, Tissue & cell.

[19]  D. Sarno,et al.  Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta) , 2010 .

[20]  E. Takahashi,et al.  Effect of silicon on the growth and phosphorus uptake of rice , 1990, Plant and Soil.

[21]  Jian Feng Ma,et al.  Uptake system of silicon in different plant species. , 2005, Journal of experimental botany.

[22]  W. Müller,et al.  Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules , 2007 .

[23]  P. Dubois,et al.  Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution. , 2000, Journal of structural biology.

[24]  J. Currey A comparison of the strength of echinoderm spines and mollusc shells , 1975, Journal of the Marine Biological Association of the United Kingdom.

[25]  J. Nebelsick,et al.  Echinoderms and Oligo‐Miocene Carbonate Systems: Potential Applications in Sedimentology and Environmental Reconstruction , 2012 .

[26]  E. Dumont Bone density and the lightweight skeletons of birds , 2010, Proceedings of the Royal Society B: Biological Sciences.

[27]  O. Ellers,et al.  Causes and Consequences of Fluctuating Coelomic Pressure in Sea Urchins. , 1992, The Biological bulletin.

[28]  S. Stock,et al.  On the Formation and Functions of High and Very High Magnesium Calcites in the Continuously Growing Teeth of the Echinoderm Lytechinus variegatus: Development of Crystallinity and Protein Involvement , 2011, Cells Tissues Organs.

[29]  M. Hidaka,et al.  Fine Structure and Mechanical Properties of the Catch Apparatus of the Sea-Urchin Spine, a Collagenous Connective Tissue with Muscle-Like Holding Capacity , 1983 .

[30]  M. Leishman,et al.  Is plant ecology more siliceous than we realise? , 2011, Trends in plant science.

[31]  E. Takahashi,et al.  The effect of silicic acid on rice in a P-deficient soil , 1990, Plant and Soil.

[32]  D. Williams,et al.  The Effect of Silicon on Yield and Manganese-54 Uptake and Distribution in the Leaves of Barley Plants Grown in Culture Solutions. , 1957, Plant physiology.

[33]  L. Datnoff,et al.  CALIBRATION OF SOIL AND PLANT SILICON ANALYSIS FOR RICE PRODUCTION* , 2001 .

[34]  A. Poustka,et al.  Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix , 2010, Proteome Science.

[35]  M. Labarbera,et al.  Mechanical properties of the stalk and cirri of the sea lily Cenocrinus asterius , 1993 .

[36]  K. McCann The diversity–stability debate , 2000, Nature.

[37]  I. Rahman,et al.  Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution , 2012, PloS one.

[38]  Thomas Speck,et al.  Biomimetics and technical textiles: solving engineering problems with the help of nature's wisdom. , 2006, American journal of botany.

[39]  A. Smith The Structure and Arrangement of Echinoid Tubercles , 1980 .

[40]  G. Hause,et al.  Ultrastructure and microanalysis of silica bodies in Dactylis Glomerata L. , 2006 .

[41]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM‐LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES 1 , 2005 .

[42]  J. E. Gordon,et al.  Structures: Or Why Things Don't Fall Down , 1978 .

[43]  J. Stone,et al.  Classifying echinoid skeleton models: testing ideas about growth and form , 2011, Paleobiology.

[44]  G. Shi,et al.  Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes , 2010, Plant Growth Regulation.

[45]  E. Epstein The anomaly of silicon in plant biology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Weiner,et al.  The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.

[47]  Jining Chen,et al.  Probing the mechanisms of silicon-mediated pathogen resistance , 2009, Plant signaling & behavior.

[48]  George Jeronimidis,et al.  Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  D. Parry,et al.  Opaline Silica Deposition in Rye (Secale cereale L.) , 1968 .

[50]  S. Stock,et al.  X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus. , 2003, Journal of structural biology.

[51]  A. Schmid,et al.  Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles , 1979, Protoplasma.

[52]  N. United States Patent , 1995 .

[53]  V. Morris Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry , 2007, Proceedings of the Royal Society B: Biological Sciences.

[54]  Srunou J. TsrpunsrY,et al.  Structure of magnesian calcite from sea urchins , 2007 .

[55]  P. Rudall,et al.  Systematics and biology of silica bodies in monocotyledons , 2003, The Botanical Review.

[56]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[57]  S. Albeck,et al.  Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. , 1996, Connective tissue research.

[58]  D. Evans,et al.  The amelioration of aluminium toxicity by silicon in higher plants : Solution chemistry or an in planta mechanism? , 1998 .

[59]  H. Schürmann Konstruieren mit Faser-Kunststoff-Verbunden , 2005 .

[60]  F. Wilt Biomineralization of the Spicules of Sea Urchin Embryos , 2002, Zoological science.

[61]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE): III. PHYLOGENETIC POSITION AND MORPHOLOGICAL VARIABILITY OF SKELETONEMA COSTATUM AND SKELETONEMA GREVILLEI, WITH THE DESCRIPTION OF SKELETONEMA ARDENS SP. NOV. 1 , 2007 .

[62]  Helen E. Townley,et al.  Diatom Frustules: Physical, Optical, and Biotechnological Applications , 2011 .

[63]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells , 1990 .

[64]  Z. Stachurski,et al.  Micromechanics of Sea Urchin Spines , 2012, PloS one.

[65]  F. Wilt,et al.  Matrix and mineral in the sea urchin larval skeleton. , 1999, Journal of structural biology.

[66]  Garry D. Peterson,et al.  Response diversity, ecosystem change, and resilience , 2003 .

[67]  Naoki Yamaji,et al.  Silicon uptake and accumulation in higher plants. , 2006, Trends in plant science.

[68]  J. Lawrence,et al.  BILATERAL SYMMETRY OF THE PETALS IN MELLITA TENUIS, ENCOPE MICROPORA, AND ARACHNOIDES PLACENTA (ECHINODERMATA: CLYPEASTEROIDA) , 1998 .

[69]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[70]  C. Geppert,et al.  Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi. , 2006, Biosensors & bioelectronics.

[71]  J. Nebelsick,et al.  Ecophenotypic variations of Encrinus liliiformis (Echinodermata: Crinoidea) from the middle Triassic Muschelkalk of Southwest Germany , 2011 .

[72]  A. Smith,et al.  The phylogeny and classification of post-Palaeozoic echinoids , 2010 .

[73]  G. Pohl,et al.  Innovative composite-fibre components in architecture , 2010 .

[74]  S. Stock,et al.  Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments , 2009 .

[75]  O. Ellers,et al.  Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments. , 1998, The Biological bulletin.

[76]  J. Grossmann,et al.  Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines , 2013, Zoomorphology.

[77]  A. C. Campbell,et al.  Taxonomic significance of spine morphology in the echinoid genera Diadema and Echinothrix , 2005 .

[78]  R. Birenheide,et al.  Contractile connective tissue in crinoids. , 1996, The Biological bulletin.

[79]  Louis G Zachos,et al.  A new computational growth model for sea urchin skeletons. , 2009, Journal of theoretical biology.

[80]  A. Smith,et al.  The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance , 2011 .

[81]  K. Iwasaki,et al.  Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. shintosa) , 1999 .

[82]  K. Märkel,et al.  Calcite-resorption in the spine of the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[83]  T. Ebert Growth and Mortality of Post-larval Echinoids , 1975 .

[84]  M. Yano,et al.  A silicon transporter in rice , 2006, Nature.

[85]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[86]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[87]  H. Claustre,et al.  BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA) , 1999 .

[88]  S. Yabuki,et al.  Origin of Silica Particles Found in the Cortex of Matteuccia Roots , 2002 .

[89]  E. Kniprath Ultrastructure and growth of the sea urchin tooth , 1974, Calcified Tissue Research.

[90]  C. Nascimento,et al.  Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil , 2008 .

[91]  H. Fujii,et al.  The role of silicon in preventing appressorial penetration by the rice blast fungus. , 2008, Phytopathology.

[92]  D. Blake,et al.  ULTRASTRUCTURAL AND MICROANALYTICAL RESULTS FROM ECHINODERM CALCITE: IMPLICATIONS FOR BIOMINERALIZATION AND DIAGENESIS OF SKELETAL MATERIAL , 1984 .

[93]  U. Sorhannus Diatom phylogenetics inferred based on direct optimization of nuclear‐encoded SSU rRNA sequences , 2004, Cladistics : the international journal of the Willi Hennig Society.

[94]  Petra Gruber,et al.  Skin In Architecture:Towards Bioinspired Facades , 2010 .

[95]  Werner Hansmann,et al.  Mechanical design in spines of diadematoid echinoids (Echinodermata, Echinoidea) , 1983, Zoomorphology.

[96]  S. Anthony Wolfe,et al.  Survival of the Prettiest: The Science of Beauty. , 2001 .

[97]  Comparison of Different Methods for the Detection of Silica Inclusions in Plant Tissues , 2012, International Journal of Plant Sciences.

[98]  David M. Williams,et al.  The evolution of the diatoms (Bacillariophyta) I. Origin of the group and assessment of the monophyly of its major divisions , 1993 .

[99]  R. Birenheide,et al.  Morphological basis and mechanics of arm movement in the stalked crinoid Metacrinus rotundus (Echinodermata, Crinoida) , 1994 .

[100]  M. Iwataki,et al.  Proposal of identification criteria for resting spores of Chaetoceros species (Bacillariophyceae) from a temperate coastal sea , 2011 .

[101]  Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming , 2006, Paleobiology.

[102]  Franka Brüchert,et al.  Biomechanics of the giant reed Arundo donax , 1997 .

[103]  L. Jones,et al.  Studies of silica in the oat plant , 1968, Plant and Soil.

[104]  J. F. Dynowski,et al.  ECHINODERM REMAINS IN SHALLOW-WATER CARBONATES AT FERNANDEZ BAY, SAN SALVADOR ISLAND, BAHAMAS , 2012 .

[105]  N. Solounias,et al.  Dietary Change and Evolution of Horses in North America , 2011, Science.

[106]  S. McNaughton,et al.  Grass leaf silicification: Natural selection for an inducible defense against herbivores. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[107]  M. Mann,et al.  Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin , 2010, Proteome Science.

[108]  O. Reynolds,et al.  Silicon‐augmented resistance of plants to herbivorous insects: a review , 2009 .

[109]  C. Killian,et al.  The dynamics of secretion during sea urchin embryonic skeleton formation. , 2008, Experimental cell research.

[110]  H. Leddy,et al.  Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[111]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[112]  Christian Hamm,et al.  Armor: Why, when and how? , 2007 .

[113]  M. Keeping,et al.  Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. , 2009 .

[114]  B. Grant,et al.  Unpredictable Evolution in a 30-Year Study of Darwin's Finches , 2002, Science.

[115]  C. Mattheck Trees: The Mechanical Design , 1991 .

[116]  Helen Arnold,et al.  Hitchhiker's guide to the galaxy , 2006, SIGGRAPH '06.

[117]  J. Ma,et al.  Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses , 2004 .

[118]  E. Takahashi,et al.  Effect of silicon on the growth of soybean plants in a solution culture , 1985 .

[119]  H. Marschner,et al.  Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.) , 1978, Plant and Soil.

[120]  J. Ralph,et al.  Accuracy of Klason lignin and acid detergent lignin methods as assessed by bomb calorimetry. , 1999, Journal of agricultural and food chemistry.

[121]  J. Pohl,et al.  The role of textiles in providing biomimetic solutions for construction , 2010 .

[122]  S. Weiner,et al.  Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[123]  O. Chadwick,et al.  The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions , 2007 .

[124]  G. Marx,et al.  Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. , 2003, Analytical and bioanalytical chemistry.

[125]  Petra Gruber Biomimetics in Architecture: Architecture of Life and Buildings , 2010 .

[126]  E. Epstein,et al.  Silicon: its manifold roles in plants , 2009 .

[127]  Christian Hamm Kieselalgen als Muster für technische Konstruktionen , 2005 .

[128]  E. Takahashi,et al.  EFFECT OF SILICON ON THE GROWTH AND FRUIT PRODUCTION OF STRAWBERRY PLANTS IN A SOLUTION CULTURE , 1986 .

[129]  G. Scurfield Reaction Wood: Its Structure and Function , 1973, Science.

[130]  M. Telford Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata) , 1985, Zoomorphology.

[131]  Yongchao Liang,et al.  Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars , 2008 .

[132]  E. Blackman The Pattern and Sequence of Opaline Silica Deposition in Rye (Secale cereale L.) , 1968 .

[133]  C. Messing,et al.  Stalked Crinoid Locomotion, and its Ecological and Evolutionary Implications , 2007 .

[134]  A. R. Ennos,et al.  A novel mechanism by which silica defends grasses against herbivory. , 2008, Annals of botany.

[135]  D. Rabosky,et al.  Diversity dynamics of marine planktonic diatoms across the Cenozoic , 2009, Nature.

[136]  A. Mead,et al.  Phylogenetic variation in the silicon composition of plants. , 2005, Annals of botany.

[137]  Morphology of Skeletal Cortex in the Arms of Crinoids (Echinodermata: Crinoidea) , 1997 .

[138]  Carole C Perry,et al.  Silica in plants: biological, biochemical and chemical studies. , 2007, Annals of botany.

[139]  Frank Henning,et al.  Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung , 2011 .

[140]  Hans Peter Monner,et al.  Smart materials for active noise and vibration reduction , 2005 .

[141]  Nicole Poulsen,et al.  Diatoms-from cell wall biogenesis to nanotechnology. , 2008, Annual review of genetics.

[142]  F. Wilt,et al.  Molecular aspects of biomineralization of the echinoderm endoskeleton. , 2008, Progress in molecular and subcellular biology.

[143]  K. Towe Echinoderm Calcite: Single Crystal or Polycrystalline Aggregate , 1967, Science.

[144]  I. Suto The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea , 2006 .

[145]  A. P. Schwab,et al.  The use of plant tissue silica content for estimating transpiration , 2005 .

[146]  François Fauteux,et al.  Silicon and plant disease resistance against pathogenic fungi. , 2005, FEMS microbiology letters.

[147]  A new theory to explain the origin of growth lines in sea urchin spines , 1986 .