Revue Des Inégalités Valides Pertinentes Aux Problèmes Des Conception De Réseaux

Abstract The objective of this paper is to present a survey of relevant valid inequalities for the multi-commodity capacitated fixed-charge network design problem. We present first a review of the relevant literature on relaxations and heuristic approaches. We observe that these approaches alone are not sufficient to solve large-scale instances of the problem. However, a combination or these approaches and polyhedral methods appears very promising. Then, we present three classes of relevant valid inequalities for the problem that have been studied for related problems. We present as well experimental results on the general implementations of some of these inequalities in a state-of-the-art commercial software. These experiments point towards the necessity of profound polyhedral studies in order to solve efficiently large-scale instances of the problem.

[1]  Martin W. P. Savelsbergh,et al.  Lifted flow cover inequalities for mixed 0-1 integer programs , 1999, Math. Program..

[2]  Laurence A. Wolsey,et al.  Submodularity and valid inequalities in capacitated fixed charge networks , 1989 .

[3]  Oktay Günlük,et al.  A branch-and-cut algorithm for capacitated network design problems , 1999, Math. Program..

[4]  G. Cornuéjols,et al.  A comparison of heuristics and relaxations for the capacitated plant location problem , 1991 .

[5]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[6]  Francisco Barahona,et al.  Network Design Using Cut Inequalities , 1996, SIAM J. Optim..

[7]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[8]  Gérard Cornuéjols,et al.  A projection method for the uncapacitated facility location problem , 1990, Math. Program..

[9]  L. Wolsey,et al.  Valid inequalities and separation for uncapacitated fixed charge networks , 1985 .

[10]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Computation , 1998, INFORMS J. Comput..

[11]  Teodor Gabriel Crainic,et al.  BOUNDING PROCEDURES FOR MULTICOMMODITY CAPACITATED FIXED CHARGE NETWORK DESIGN PROBLEMS. , 1995 .

[12]  Thomas L. Magnanti,et al.  Valid inequalities and facets of the capacitated plant location problem , 1989, Math. Program..

[13]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[14]  Itzhak Gilboa,et al.  Source Sink Flows with Capacity Installation in Batches , 1998, Discret. Appl. Math..

[15]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[16]  Laurence A. Wolsey,et al.  Technical Note - Facets and Strong Valid Inequalities for Integer Programs , 1976, Oper. Res..

[17]  Laurence A. Wolsey,et al.  Strong Formulations for Multi-Item Capacitated Lot Sizing , 1984 .

[18]  Prakash Mirchandani Polyhedral structure of a capacitated network design problem with an application to the telecommunication industry , 1989 .

[19]  Laurence A. Wolsey,et al.  Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..

[20]  Cynthia Barnhart,et al.  Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems , 2000, Oper. Res..

[21]  Laurence A. Wolsey,et al.  Capacitated Facility Location: Valid Inequalities and Facets , 1995, Math. Oper. Res..

[22]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[23]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[24]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[25]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[26]  Michel Gendreau,et al.  A Simplex-Based Tabu Search Method for Capacitated Network Design , 2000, INFORMS J. Comput..

[27]  Thomas L. Magnanti,et al.  Linear programming and capacitated network loading , 1998 .

[28]  Thomas L. Magnanti,et al.  Modeling and Solving the Two-Facility Capacitated Network Loading Problem , 1995, Oper. Res..

[29]  Thomas L. Magnanti,et al.  A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design , 1989, Oper. Res..

[30]  Thomas L. Magnanti,et al.  The convex hull of two core capacitated network design problems , 1993, Math. Program..

[31]  Oktay Günlük,et al.  Minimum cost capacity installation for multicommodity network flows , 1998, Math. Program..

[32]  C. Burdet,et al.  On cutting planes , 1973 .

[33]  Johan Hellstrand,et al.  Solving the Uncapacitated Network Design Problem by a Lagrangean Heuristic and Branch-and-Bound , 1998, Oper. Res..

[34]  Daniel Bienstock,et al.  Strong inequalities for capacitated survivable network design problems , 2000, Math. Program..

[35]  Karen Aardal,et al.  Capacitated facility location: Separation algorithms and computational experience , 1998, Math. Program..

[36]  Laurence A. Wolsey,et al.  Valid Inequalities and Superadditivity for 0-1 Integer Programs , 1977, Math. Oper. Res..

[37]  Anantaram Balakrishnan,et al.  Valid inequalities and algorithms for the network design problem with an application to LTL consolidation , 1984 .

[38]  Jan Stallaert Valid Inequalities and Separation for Capacitated Fixed Charge Flow Problems , 2000, Discret. Appl. Math..

[39]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Complexity , 1999, INFORMS J. Comput..

[40]  J. Krarup,et al.  Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem , 1977 .

[41]  Teodor Gabriel Crainic,et al.  Planning models for freight transportation , 1997 .

[42]  Oktay Günlük,et al.  Capacitated Network Design - Polyhedral Structure and Computation , 1996, INFORMS J. Comput..

[43]  Laurence A. Wolsey,et al.  Uncapacitated lot-sizing: The convex hull of solutions , 1984 .

[44]  Teodor Gabriel Crainic,et al.  RELAXATIONS FOR MULTICOMMODITY CAPACITATED NETWORK DESIGN PROBLEMS. , 1994 .