Phase decomposition and mechanical properties of pseudo-high entropy Zr65(Al,Fe,Co,Ni,M)35 (M=Cu, Ag or Pd) glassy alloys

[1]  A. Inoue,et al.  Multicomponent bulk metallic glasses with elevated-temperature resistance , 2019, MRS Bulletin.

[2]  C. Kiminami,et al.  Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86‒89B11‒14 amorphous phase , 2019, Acta Materialia.

[3]  Y. Ikuhara,et al.  Influence of Ag replacement on the formation and heating-induced phase decomposition of Zr65Al7.5Co27.5-xAgx (x=5 to 20 at%) glassy alloys , 2019, Journal of Alloys and Compounds.

[4]  A. Inoue,et al.  Influence of Ag replacement on supercooled liquid region and icosahedral phase precipitation of Zr65Al7.5Ni10Cu17.5-xAgx (x = 0–17.5 at%) glassy alloys , 2018 .

[5]  A. Inoue,et al.  Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys , 2018 .

[6]  J. Eckert,et al.  Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys , 2016 .

[7]  D. V. Louzguine-Luzgin,et al.  Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys , 2015 .

[8]  Tao Zhang,et al.  Glass-forming ability, crystallization kinetics, mechanical property, and corrosion behavior of Zr–Al–Ni–Ag glassy alloys , 2014 .

[9]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[10]  Kwang-Ryeol Lee,et al.  How can a minor element added to a binary amorphous alloy simultaneously improve the plasticity and glass-forming ability? , 2013 .

[11]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[12]  A. Hirata,et al.  Crystallization process and glass stability of an Fe 48 Cr 15 Mo 14 C 15 B 6 Tm 2 bulk metallic glass , 2008 .

[13]  J. Eckert,et al.  Thermal stability, microstructure and crystallization kinetics of melt-spun Zr-Ti-Cu-Ni metallic glass , 2008 .

[14]  C. Liu,et al.  A scheme to design multi-component bulk metallic glasses in ideal glass-forming liquids , 2007 .

[15]  A. Hirata,et al.  Mechanism of nanocrystalline microstructure formation in amorphous Fe-Nb-B alloys , 2006 .

[16]  T. Ohkubo,et al.  Early crystallization stages in a Zr–Cu–Ni–Al–Ti metallic glass , 2005 .

[17]  D. Matveev,et al.  Formation and structure of nanocrystals in bulk Zr50Ti16Cu15Ni19 metallic glass , 2004 .

[18]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[19]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[20]  A. Inoue,et al.  Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys , 2002 .

[21]  A. Inoue,et al.  Nano-Metals I. Nano Icosahedral Quasicrystalline Phase in Zr65Al7.5Ni10Ag17.5 Quaternary Glassy Alloy. , 2001 .

[22]  S. Roos,et al.  Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys , 1996 .

[23]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[24]  A. L. Greer,et al.  Metallic glasses…on the threshold , 2009 .

[25]  A. Inoue High strength bulk amorphous alloys with low critical cooling rates (overview) , 1995 .

[26]  A. Inoue,et al.  Al–La–Ni Amorphous Alloys with a Wide Supercooled Liquid Region , 1989 .

[27]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .