Dynamic Response of Blast-Loaded Stiffened Plates by Rigid-Plastic Analysis

The dynamic response of one-way stiffened plates with clamped edges subjected to uniformly distributed blast-induced shock loading is theoretically investigated using a singly symmetric beam model. The beam model is based on the rigid-perfectly plastic assumption. The bending moment-axial force capacity interaction relation or yield curve for singly symmetric cross-section is derived and explicitly presented. The deflection condition that a plastic string response must satisfy is determined by the linearized interaction curve and associated plastic flow rule. Moreover, the possible motion mechanisms of the beam are discussed under different load intensity. Finally the dynamic response of a one-way stiffened plate is calculated theoretically and numerically. Good agreements are obtained between the presented theoretical results and those from numerical calculations of the FEM software ANSYS and ABAQUS/Explicit. It is concluded that the basic assumptions and approximations for simplifying calculations are reasonable and the beam model in theoretical analysis is adoptable. The example also shows that an arbitrary blast load can be replaced equivalently by a rectangular type pulse.Copyright © 2010 by ASME