On the stability of 2/sup n/-periodic binary sequences

The k-error linear complexity of a periodic binary sequence is defined to be the smallest linear complexity that can be obtained by changing k or fewer bits per period. This contribution focuses on the case of 2n-periodic binary sequences. For k=1,2, the exact formula for the expected k-error linear complexity of a sequence having maximal possible linear complexity 2n, and the exact formula of the expected 1-error linear complexity of a random 2n-periodic binary sequence are provided. For k ges 2, lower and upper bounds on the expected value of the k-error linear complexity of a random 2n-periodic binary sequence are established