Multiple Kernel Learning for Visual Object Recognition: A Review

Multiple kernel learning (MKL) is a principled approach for selecting and combining kernels for a given recognition task. A number of studies have shown that MKL is a useful tool for object recognition, where each image is represented by multiple sets of features and MKL is applied to combine different feature sets. We review the state-of-the-art for MKL, including different formulations and algorithms for solving the related optimization problems, with the focus on their applications to object recognition. One dilemma faced by practitioners interested in using MKL for object recognition is that different studies often provide conflicting results about the effectiveness and efficiency of MKL. To resolve this, we conduct extensive experiments on standard datasets to evaluate various approaches to MKL for object recognition. We argue that the seemingly contradictory conclusions offered by studies are due to different experimental setups. The conclusions of our study are: (i) given a sufficient number of training examples and feature/kernel types, MKL is more effective for object recognition than simple kernel combination (e.g., choosing the best performing kernel or average of kernels); and (ii) among the various approaches proposed for MKL, the sequential minimal optimization, semi-infinite programming, and level method based ones are computationally most efficient.

[1]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[2]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[4]  Sebastian Nowozin,et al.  Infinite Kernel Learning , 2008, NIPS 2008.

[5]  Josef Kittler,et al.  A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification , 2009, 2009 Seventh International Workshop on Content-Based Multimedia Indexing.

[6]  William Stafford Noble,et al.  Nonstationary kernel combination , 2006, ICML.

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  Rong Jin,et al.  Active kernel learning , 2008, ICML '08.

[9]  Sven J. Dickinson,et al.  Object Categorization: The Evolution of Object Categorization and the Challenge of Image Abstraction , 2009 .

[10]  Manik Varma,et al.  More generality in efficient multiple kernel learning , 2009, ICML '09.

[11]  Cordelia Schmid,et al.  Dataset Issues in Object Recognition , 2006, Toward Category-Level Object Recognition.

[12]  Melanie Hilario,et al.  Margin and Radius Based Multiple Kernel Learning , 2009, ECML/PKDD.

[13]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Zenglin Xu,et al.  Simple and Efficient Multiple Kernel Learning by Group Lasso , 2010, ICML.

[15]  Rong Jin,et al.  Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition , 2010, NIPS.

[16]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[17]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  Tomer Hertz,et al.  Learning distance functions : algorithms and applications (למידת פונקציות מרחק.) , 2006 .

[19]  Christopher K. I. Williams,et al.  Pascal Visual Object Classes Challenge Results , 2005 .

[20]  Jian Dong,et al.  Contextualizing Object Detection and Classification , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  Francesco Orabona,et al.  OM-2: An online multi-class Multi-Kernel Learning algorithm Luo Jie , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[23]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[24]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[25]  Jiangtao Ren,et al.  Multiple Kernel Learning Improved by MMD , 2010, ADMA.

[26]  Motoaki Kawanabe,et al.  Multiple Kernel Learning for Object Classification , 2009 .

[27]  Mark J. F. Gales,et al.  Multiple kernel learning for speaker verification , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Ethem Alpaydin,et al.  Localized multiple kernel learning , 2008, ICML '08.

[29]  Vikas Sindhwani,et al.  Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels , 2011, NIPS.

[30]  Ryota Tomioka,et al.  Sparsity-accuracy trade-off in MKL , 2010, 1001.2615.

[31]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[32]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[33]  Michael I. Jordan,et al.  Computing regularization paths for learning multiple kernels , 2004, NIPS.

[34]  Cheng Soon Ong,et al.  Multiclass multiple kernel learning , 2007, ICML '07.

[35]  Theodoros Damoulas,et al.  Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection , 2008, Bioinform..

[36]  John Shawe-Taylor,et al.  A Note on Improved Loss Bounds for Multiple Kernel Learning , 2011, ArXiv.

[37]  Rong Jin,et al.  Online Multiple Kernel Learning: Algorithms and Mistake Bounds , 2010, ALT.

[38]  Hongping Cai,et al.  ℓp norm multiple kernel Fisher discriminant analysis for object and image categorisation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[40]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[41]  Chiranjib Bhattacharyya,et al.  Variable Sparsity Kernel Learning , 2011, J. Mach. Learn. Res..

[42]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[43]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[44]  Jieping Ye,et al.  Multi-label Multiple Kernel Learning , 2008, NIPS.

[45]  N. Cristianini,et al.  On Kernel-Target Alignment , 2001, NIPS.

[46]  Klaus-Robert Müller,et al.  Efficient and Accurate Lp-Norm Multiple Kernel Learning , 2009, NIPS.

[47]  Gunnar Rätsch,et al.  A General and Efficient Multiple Kernel Learning Algorithm , 2005, NIPS.

[48]  Zenglin Xu,et al.  An Extended Level Method for Efficient Multiple Kernel Learning , 2008, NIPS.

[49]  Yves Grandvalet,et al.  More efficiency in multiple kernel learning , 2007, ICML '07.

[50]  Mehryar Mohri,et al.  Learning Non-Linear Combinations of Kernels , 2009, NIPS.

[51]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[52]  Cordelia Schmid,et al.  TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[53]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[54]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[55]  Cristian Sminchisescu,et al.  Object recognition as ranking holistic figure-ground hypotheses , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Sebastian Nowozin,et al.  Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Inderjit S. Dhillon,et al.  Learning low-rank kernel matrices , 2006, ICML.

[58]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[59]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[60]  Wen Gao,et al.  Group-sensitive multiple kernel learning for object categorization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[61]  Cordelia Schmid,et al.  Combining efficient object localization and image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[62]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[63]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[64]  Peter L. Bartlett,et al.  A Unifying View of Multiple Kernel Learning , 2010, ECML/PKDD.

[65]  Mario Fernando Montenegro Campos,et al.  Sparse Spatial Coding: A novel approach for efficient and accurate object recognition , 2012, 2012 IEEE International Conference on Robotics and Automation.

[66]  Zenglin Xu,et al.  Smooth Optimization for Effective Multiple Kernel Learning , 2010, AAAI.

[67]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[68]  Changshui Zhang,et al.  Learning Kernels with Radiuses of Minimum Enclosing Balls , 2010, NIPS.

[69]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[70]  Dhiraj Joshi,et al.  Object Categorization: Computer and Human Vision Perspectives , 2008 .

[71]  Gunnar Rätsch,et al.  The SHOGUN Machine Learning Toolbox , 2010, J. Mach. Learn. Res..

[72]  S. V. N. Vishwanathan,et al.  Multiple Kernel Learning and the SMO Algorithm , 2010, NIPS.

[73]  M. Kloft,et al.  l p -Norm Multiple Kernel Learning , 2011 .

[74]  Songcan Chen,et al.  MultiK-MHKS: A Novel Multiple Kernel Learning Algorithm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Francis R. Bach,et al.  Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning , 2008, NIPS.

[76]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[77]  Liva Ralaivola,et al.  Multiple indefinite kernel learning with mixed norm regularization , 2009, ICML '09.

[78]  Mehryar Mohri,et al.  L2 Regularization for Learning Kernels , 2009, UAI.

[79]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[80]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[81]  Florent Perronnin,et al.  Large-scale image categorization with explicit data embedding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[82]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[83]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[84]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[85]  Wen Gao,et al.  Per-Sample Multiple Kernel Approach for Visual Concept Learning , 2010, EURASIP J. Image Video Process..

[86]  Ivor W. Tsang,et al.  SimpleNPKL: simple non-parametric kernel learning , 2009, ICML '09.

[87]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[88]  Alexander Zien,et al.  lp-Norm Multiple Kernel Learning , 2011, J. Mach. Learn. Res..

[89]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition , 2006, Toward Category-Level Object Recognition.

[90]  Mehryar Mohri,et al.  Generalization Bounds for Learning Kernels , 2010, ICML.

[91]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Manik Varma,et al.  Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[94]  K. R. Ramakrishnan,et al.  On the Algorithmics and Applications of a Mixed-norm based Kernel Learning Formulation , 2009, NIPS.