Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation

[1]  Daniel E. Schindler,et al.  Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics , 2010 .

[2]  George M. Hornberger,et al.  Atmospheric Reaeration in a River Using Productivity Analysis , 1975 .

[3]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[4]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[5]  Jordan S. Read,et al.  LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models , 2016 .

[6]  E. Rosi-Marshall,et al.  Metabolism, Gas Exchange, and Carbon Spiraling in Rivers , 2015, Ecosystems.

[7]  D. Schindler,et al.  Two‐stage metabolism inferred from diel oxygen dynamics in aquatic ecosystems , 2017 .

[8]  KathiJo Jankowski,et al.  Comment on Demars et al. 2015, “Stream metabolism and the open diel oxygen method: Principles, practice, and perspectives” , 2016 .

[9]  Stephen R. Carpenter,et al.  Evaluation of metabolism models for free‐water dissolved oxygen methods in lakes , 2008 .

[10]  Bruce B. Benson,et al.  The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1 , 1984 .

[11]  H. Odum Primary Production in Flowing Waters1 , 1956 .

[12]  B. Delille,et al.  Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames) , 2003 .

[13]  Walter K. Dodds,et al.  Nitrogen cycling and metabolism in the thalweg of a prairie river , 2008 .

[14]  Kirsten M. Winters,et al.  Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes , 2016 .

[15]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[16]  J. Beaulieu,et al.  Estimating autotrophic respiration in streams using daily metabolism data , 2013, Freshwater Science.

[17]  P. Mulholland,et al.  Multiple Scales of Temporal Variability in Ecosystem Metabolism Rates: Results from 2 Years of Continuous Monitoring in a Forested Headwater Stream , 2007, Ecosystems.

[18]  B. Jähne,et al.  On the parameters influencing air‐water gas exchange , 1987 .

[19]  J. Gulliver,et al.  Modeling the effect of light on whole-stream respiration , 1999 .

[20]  M. Kummu,et al.  Patterns of Ecosystem Metabolism in the Tonle Sap Lake, Cambodia with Links to Capture Fisheries , 2013, PloS one.

[21]  James T. Thorson,et al.  Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .

[22]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[23]  Perry de Valpine,et al.  BETTER INFERENCES FROM POPULATION-DYNAMICS EXPERIMENTS USING MONTE CARLO STATE-SPACE LIKELIHOOD METHODS , 2003 .

[24]  S. Carpenter,et al.  Free‐water lake metabolism: addressing noisy time series with a Kalman filter , 2012 .

[25]  S. Hladyz,et al.  Fast processing of diel oxygen curves: Estimating stream metabolism with BASE (BAyesian Single‐station Estimation) , 2015 .

[26]  Alan D. Steinman,et al.  Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams , 1998 .

[27]  R. O. Megard,et al.  Kinetics of oxygenic photosynthesis in planktonic algae , 1984 .

[28]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[29]  L. A. Marshall,et al.  A coupled metabolic‐hydraulic model and calibration scheme for estimating whole‐river metabolism during dynamic flow conditions , 2017 .

[30]  Peter Reichert,et al.  Variability of photosynthesis‐irradiance curves and ecosystem respiration in a small river , 2000 .

[31]  R. Hall,et al.  Chapter 34 – Stream Metabolism , 2017 .

[32]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[33]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[34]  B. Hart,et al.  Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream , 2008, Journal of the North American Benthological Society.

[35]  Christopher J. Zappa,et al.  Environmental turbulent mixing controls on air‐water gas exchange in marine and aquatic systems , 2007 .

[36]  Heinz G. Stefan,et al.  Stream productivity analysis with dormIDevelopment of computational model , 1984 .

[37]  C. M. Britton,et al.  Relationships of photosynthetically active radiation and shortwave irradiance , 1976 .

[38]  F. Ballantyne,et al.  Methods of approximation influence aquatic ecosystem metabolism estimates , 2016 .

[39]  Oihana Izagirre,et al.  RIVERMET: An Excel-based tool to calculate river metabolism from diel oxygen-concentration curves , 2007, Environ. Model. Softw..

[40]  A. Elosegi,et al.  Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism , 2009, Hydrobiologia.

[41]  Jordan S. Read,et al.  geoknife: reproducible web-processing of large gridded datasets , 2016 .

[42]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[43]  Dennis R Helsel,et al.  Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. , 2006, Chemosphere.

[44]  W. Shuster,et al.  Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream , 2013 .

[45]  T. Kennedy,et al.  Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon , 2015 .

[46]  R. Hall,et al.  Shifts in Klamath River metabolism following a reservoir cyanobacterial bloom , 2016, Freshwater Science.