Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots.

[1]  H. Jensen,et al.  Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark , 1995 .

[2]  Wolfhard Weidel Des Pudels Kern , 1964 .

[3]  Peng Gong,et al.  Noise Effect on Linear Spectral Unmixing , 1999, Ann. GIS.

[4]  Chaosheng Zhang,et al.  A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments. , 2012, The Science of the total environment.

[5]  Michael P. Harper,et al.  Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration : Dialysis and DET , 1997 .

[6]  Chaosheng Zhang,et al.  Diffusive gradients in thin films technique equipped with a mixed binding gel for simultaneous measurements of dissolved reactive phosphorus and dissolved iron. , 2013, Environmental science & technology.

[7]  R. Tomlinson,et al.  Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni , 2012 .

[8]  E. Selander,et al.  A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments , 2002 .

[9]  P. Teasdale,et al.  A novel gel‐based technique for the high resolution, two‐dimensional determination of iron (II) and sulfide in sediment , 2008 .

[10]  P. Teasdale,et al.  Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(II) and sulfide in seagrass sediment porewaters. , 2011, Chemosphere.

[11]  Ronnie N. Glud,et al.  Oxygen dynamics in the rhizosphere of Zostera marina: A two‐dimensional planar optode study , 2006 .

[12]  In situ study of short-term variations of redox species chemistry in intertidal permeable sediments of the Arcachon lagoon , 2012, Hydrobiologia.

[13]  G. Chaillou,et al.  Phosphorus diagenesis in sediment of the Thau Lagoon , 2007 .

[14]  Timothy M. Shank,et al.  Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA) , 2008 .

[15]  G. Luther,et al.  Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. , 1995, Environmental science & technology.

[16]  W. Davison,et al.  Size and density distribution of sulfide-producing microniches in lake sediments. , 2007, Environmental science & technology.

[17]  Sabine Chabrillat,et al.  Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution , 2002 .

[18]  S. M. Shuttleworth,et al.  Two-Dimensional and Fine Structure in the Concentrations of Iron and Manganese in Sediment Pore-Waters , 1999 .

[19]  G. Luther,et al.  Iron and Sulfur Chemistry in a Stratified Lake: Evidence for Iron-Rich Sulfide Complexes , 2003 .

[20]  Ingo Klimant,et al.  Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities , 1996 .

[21]  Jean-Pierre Bibring,et al.  Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) : Methodology and first results , 2008 .

[22]  Chaosheng Zhang,et al.  Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films. , 2013, Environmental science & technology.

[23]  J. Deborde,et al.  Changes in Nutrient Biogeochemistry in Response to the Regression of Zostera noltii Meadows in the Arcachon Bay (France) , 2013, Aquatic Geochemistry.

[24]  Hao Zhang,et al.  Simultaneous release of metals and sulfide in lacustrine sediment. , 2003, Environmental science & technology.

[25]  W. Davison,et al.  In situspeciation measurements of trace components in natural waters using thin-film gels , 1994, Nature.

[26]  G. Grime,et al.  Distribution of dissolved iron in sediment pore waters at submillimetre resolution , 1991, Nature.

[27]  Ronnie N. Glud,et al.  Small‐scale spatial and temporal variability in coastal benthic O2 dynamics: Effects of fauna activity , 2004 .

[28]  William A. Maher,et al.  Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex re-examination of optimum conditions for the analysis of phosphate , 1995 .

[29]  W. Tych,et al.  IN SITU HIGH RESOLUTION MEASUREMENTS OF FLUXES OF NI, CU, FE, AND MN AND CONCENTRATIONS OF ZN AND CD IN POREWATERS BY DGT , 1995 .

[30]  G. G. Leppard,et al.  Physico-chemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake , 1989 .

[31]  Marie-Lise Delgard Étude des effets et du rôle des herbiers à Zostera noltii sur la biogéochimie des sédiments intertidaux , 2013 .

[32]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[33]  A. Schnepf,et al.  High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars , 2012 .

[34]  Laurence Gassiat Hydrodynamique et évolution sédimentaire d'un système lagune, flèche littorale : le Bassin d'Arcachon et la flèche du Cap Ferret , 1989 .

[35]  B. Sundby,et al.  Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments , 1998 .

[36]  I. Auby,et al.  Suivi stationnel des herbiers de zostères (Zostera noltei et Zostera marina) de la Masse d'eau côtière FRFC06 – Arcachon amont - - Bassin Hydrographique Adour-Garonne - 2006-2012 , 2009 .

[37]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[38]  T. Blackburn,et al.  Distribution of oxygen in marine sediments measured with microelectrodes1 , 1980 .

[39]  T. Blackburn,et al.  Oxygen in the Sea Bottom Measured with a Microelectrode , 1980, Science.

[40]  D. Jézéquel,et al.  Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination. , 2013, Water research.

[41]  M. Krom,et al.  High-resolution pore-water sampling with a gel sampler , 1994 .

[42]  M. Mellon,et al.  Molybdenum Blue Reaction: A Spectrophotometric Study , 1941 .

[43]  X. Montaudouin,et al.  Long-term evolution (1988–2008) of Zostera spp. meadows in Arcachon Bay (Bay of Biscay) , 2010 .

[44]  I. Auby,et al.  Seasonal dynamics of Zostera noltii hornem. In the bay of arcachon (France) , 1996 .

[45]  C. P. Spencer,et al.  Comparison of Several Methods of Determining Inorganic Phosphate in Sea Water , 1963, Journal of the Marine Biological Association of the United Kingdom.

[46]  Yanzhen Fan,et al.  A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2 distributions in marine sediments , 2006 .

[47]  F. E. Livingston,et al.  General Trends for Bulk Diffusion in Ice and Surface Diffusion on Ice , 2002 .

[48]  D. Jézéquel,et al.  Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France) , 2007 .

[49]  Hao Zhang,et al.  Micro-scale biogeochemical heterogeneity in sediments : a review of available technology and observed evidence. , 2009 .

[50]  Tianbo Liu Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution. , 2002, Journal of the American Chemical Society.

[51]  Guowang Miao,et al.  Long term evolution , 2016 .

[52]  Felix Janssen,et al.  Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey , 2003 .

[53]  P. Chardy,et al.  Heterogeneity of macrozoobenthic assemblages within a Zostera noltii seagrass bed: diversity, abundance, biomass and structuring factors , 2004 .

[54]  Clifford H. Mortimer,et al.  THE EXCHANGE OF DISSOLVED SUBSTANCES BETWEEN MUD AND WATER IN LAKES, II , 1941 .

[55]  Oliver Kohls,et al.  HETEROGENEITY OF OXYGEN PRODUCTION AND CONSUMPTION IN A PHOTOSYNTHETIC MICROBIAL MAT AS STUDIED BY PLANAR OPTODES , 1999 .

[56]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[57]  Vanina Pasqualini,et al.  Seasonal dynamics of Zostera noltii Hornem. in two Mediterranean lagoons , 2005, Hydrobiologia.

[58]  G. Bachelet,et al.  Effects of seasonal dynamics in a Zostera noltii meadow on phosphorus and iron cycles in a tidal mudflat (Arcachon Bay, France) , 2008 .

[59]  William Davison,et al.  Iron and manganese in lakes , 1993 .

[60]  C. Serain,et al.  Soluble Molybdenum Blues — “des Pudels Kern” , 2000 .

[61]  P. Teasdale,et al.  In situ, High-Resolution Measurement of Dissolved Sulfide Using Diffusive Gradients in Thin Films with Computer-Imaging Densitometry. , 1999, Analytical chemistry.