Scalable design for field-coupled nanocomputing circuits

Field-coupled Nanocomputing (FCN) technologies are considered as a solution to overcome physical boundaries of conventional CMOS approaches. But despite ground breaking advances regarding their physical implementation as e.g. Quantum-dot Cellular Automata (QCA), Nanomagnet Logic (NML), and many more, there is an unsettling lack of methods for large-scale design automation of FCN circuits. In fact, design automation for this class of technologies still is in its infancy - heavily relying either on manual labor or automatic methods which are applicable for rather small functionality only. This work presents a design method which - for the first time - allows for the scalable design of FCN circuits that satisfy dedicated constraints of these technologies. The proposed scheme is capable of handling around 40000 gates within seconds while the current state-of-the-art takes hours to handle around 20 gates. This is confirmed by experimental results on the layout level for various established benchmarks libraries.

[1]  Robert A. Wolkow,et al.  Quantum Transport in Gated Dangling-Bond Atomic Wires. , 2017, Nano letters.

[2]  Jing Huang,et al.  Tile-based QCA design using majority-like logic primitives , 2005, JETC.

[3]  Robert Wille,et al.  Evaluating the Impact of Interconnections in Quantum-Dot Cellular Automata , 2018, 2018 21st Euromicro Conference on Digital System Design (DSD).

[4]  S. Perri,et al.  New Methodology for the Design of Efficient Binary Addition Circuits in QCA , 2012, IEEE Transactions on Nanotechnology.

[5]  Robert Wille,et al.  An Energy-Aware Model for the Logic Synthesis of Quantum-Dot Cellular Automata , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Omar P. Vilela Neto,et al.  USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Tim Rausch,et al.  High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization—Progress and Challenges , 2015 .

[8]  Mariagrazia Graziano,et al.  A standard cell approach for MagnetoElastic NML circuits , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[9]  Bibhash Sen,et al.  Optimal synthesis of QCA logic circuit eliminating wire-crossings , 2017, IET Circuits Devices Syst..

[10]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[11]  Frank Sill,et al.  A Methodology for Standard Cell Design for QCA , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[12]  Rolf Drechsler,et al.  Exploration of the Synchronization Constraint in Quantum-dot Cellular Automata , 2018, 2018 21st Euromicro Conference on Digital System Design (DSD).

[13]  Goos Kant,et al.  A Better Heuristic for Orthogonal Graph Drawings , 1994, ESA.

[14]  Mayur Bubna,et al.  A layout-aware physical design method for constructing feasible QCA circuits , 2008, GLSVLSI '08.

[15]  Michael T. Niemier,et al.  Molecular cellular networks: A non von Neumann architecture for molecular electronics , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[16]  José Augusto Miranda Nacif,et al.  A quantum-dot cellular automata processor design , 2014, 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI).

[17]  Sándor P. Fekete,et al.  Orthogonal Graph Drawing , 2001, Drawing Graphs.

[18]  Robert A. Wolkow,et al.  Consequences of Many-Cell Correlations in Clocked Quantum-Dot Cellular Automata , 2012, IEEE Transactions on Nanotechnology.

[19]  Yun Shang,et al.  An Optimized Majority Logic Synthesis Methodology for Quantum-Dot Cellular Automata , 2010, IEEE Transactions on Nanotechnology.

[20]  Robert A. Wolkow,et al.  Atomic White-Out: Enabling Atomic Circuitry through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface. , 2017, ACS nano.

[21]  Therese C. Biedl Improved Orthogonal Drawings of 3-graphs , 1996, CCCG.

[22]  W. Porod,et al.  Edge-Mode Resonance-Assisted Switching of Nanomagnet Logic Elements , 2015, IEEE Transactions on Magnetics.

[23]  Robert A. Wolkow,et al.  Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. , 2011, The Journal of chemical physics.

[24]  José Augusto Miranda Nacif,et al.  A Placement and routing algorithm for Quantum-dot Cellular Automata , 2016, 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI).

[25]  Mayler G. A. Martins,et al.  Majority-based logic synthesis for nanometric technologies , 2014, 14th IEEE International Conference on Nanotechnology.

[26]  Sung Kyu Lim,et al.  Node duplication and routing algorithms for quantum-dot cellular automata circuits , 2006 .

[27]  Giovanni De Micheli,et al.  The EPFL Combinational Benchmark Suite , 2015 .

[28]  Robert Wille,et al.  An exact method for design exploration of quantum-dot cellular automata , 2018, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[29]  Fabrizio Riente,et al.  Parallel and Serial Computation in Nanomagnet Logic: An Overview , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[30]  Earl E. Swartzlander,et al.  Design of Semiconductor QCA Systems , 2013 .

[31]  Giovanni De Micheli,et al.  Synthesis and Optimization of Digital Circuits , 1994 .

[32]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[33]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[34]  Sanjukta Bhanja,et al.  Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives , 2014 .

[35]  Miha Mraz,et al.  Layout design of manufacturable quantum-dot cellular automata , 2012, Microelectron. J..

[36]  F. Brglez,et al.  A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN , 1985 .

[37]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[38]  Sung Kyu Lim,et al.  Automatic cell placement for quantum-dot cellular automata , 2004, GLSVLSI '04.

[39]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[40]  Reza Sabbaghi-Nadooshan,et al.  A novel quantum-dot cellular automata CLB of FPGA , 2014 .