Automated Depression Diagnosis Based on Facial Dynamic Analysis and Sparse Coding

Depression is a severe psychiatric disorder preventing a person from functioning normally in both work and daily lives. Currently, diagnosis of depression requires extensive participation from clinical experts. It has drawn much attention to develop an automatic system for efficient and reliable diagnosis of depression. Under the influence of depression, visual-based behavior disorder is readily observable. This paper presents a novel method of exploring facial region visual-based nonverbal behavior analysis for automatic depression diagnosis. Dynamic feature descriptors are extracted from facial region subvolumes, and sparse coding is employed to implicitly organize the extracted feature descriptors for depression diagnosis. Discriminative mapping and decision fusion are applied to further improve the accuracy of visual-based diagnosis. The integrated approach has been tested on the AVEC2013 depression database and the best visual-based mean absolute error/root mean square error results have been achieved.

[1]  Olga V. Demler,et al.  The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). , 2003, JAMA.

[2]  Michael Wagner,et al.  Multimodal assistive technologies for depression diagnosis and monitoring , 2013, Journal on Multimodal User Interfaces.

[3]  Roland Göcke,et al.  Relative Body Parts Movement for Automatic Depression Analysis , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[4]  Michael Elad,et al.  Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation , 2010, IEEE Transactions on Signal Processing.

[5]  Heng Wang,et al.  Depression recognition based on dynamic facial and vocal expression features using partial least square regression , 2013, AVEC@ACM Multimedia.

[6]  H A Pincus,et al.  The societal costs of chronic major depression. , 2001, The Journal of clinical psychiatry.

[7]  Fernando De la Torre,et al.  Detecting depression from facial actions and vocal prosody , 2009, 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops.

[8]  A. Beck,et al.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.

[9]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[10]  Tamás D. Gedeon,et al.  Emotion recognition using PHOG and LPQ features , 2011, Face and Gesture 2011.

[11]  Niall Firth,et al.  Computers diagnose depression from our body language , 2013 .

[12]  H P Hirsbrunner,et al.  Analyzing nonverbal behavior in depression. , 1983, Journal of abnormal psychology.

[13]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  M. Swerts,et al.  Verbal and Nonverbal Correlates for Depression: A Review , 2012 .

[15]  I. Jones,et al.  Some Nonverbal Aspects of Depression and Schizophrenia Occurring during the Interview , 1979, The Journal of nervous and mental disease.

[16]  Bir Bhanu,et al.  Facial expression recognition using emotion avatar image , 2011, Face and Gesture 2011.

[17]  Thomas F. Quatieri,et al.  Vocal biomarkers of depression based on motor incoordination , 2013, AVEC@ACM Multimedia.

[18]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[19]  Weifeng Liu,et al.  Facial expression recognition based on discriminative dictionary learning , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[20]  Michael Wagner,et al.  Eye movement analysis for depression detection , 2013, 2013 IEEE International Conference on Image Processing.

[21]  Mohammad H. Mahoor,et al.  Nonverbal social withdrawal in depression: Evidence from manual and automatic analyses , 2014, Image Vis. Comput..

[22]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[23]  Pierre Philippot,et al.  Nonverbal Behavior in Clinical Settings , 2003 .

[24]  Maja Pantic,et al.  Action unit detection using sparse appearance descriptors in space-time video volumes , 2011, Face and Gesture 2011.

[25]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Michael Elad,et al.  K-SVD dictionary-learning for the analysis sparse model , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Naonori Ueda,et al.  Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Roland Göcke,et al.  Neural-net classification for spatio-temporal descriptor based depression analysis , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[30]  Roland Göcke,et al.  Diagnosis of depression by behavioural signals: a multimodal approach , 2013, AVEC@ACM Multimedia.

[31]  D. Basak,et al.  Support Vector Regression , 2008 .

[32]  Jeffrey F. Cohn,et al.  Detecting Depression Severity from Vocal Prosody , 2013, IEEE Transactions on Affective Computing.

[33]  D. Mohr,et al.  Major depressive disorder , 2016, Nature Reviews Disease Primers.

[34]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.