In vivo dendritic calcium imaging with a fiberoptic periscope system

Dendritic recordings in freely moving animals present great challenges using the current approaches. Here we present in detail a microendoscopic technique (the 'periscope' method) for measuring intracellular calcium activity directly from the apical dendrites of L5 pyramidal neurons from the pia down to depths of ∼700 μm in anesthetized and freely moving rats. This method gives high signal-to-noise dendritic fluorescence responses to sensory stimuli, and has been proven to be inexpensive, straightforward and reliable, allowing essentially unrestricted behavior. We describe refinements and practical optimizations of procedures aimed at achieving dendritic Ca2+ imaging in freely moving animals. The periscope imaging technique presented here is also ideal for combining with other in vivo recording techniques. The protocol, from the beginning of anesthesia to starting dendritic imaging, can be completed in 5 h.

[1]  Shin Nagayama,et al.  In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits , 2007, Neuron.

[2]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[3]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Mank,et al.  Genetically encoded calcium indicators. , 2008, Chemical reviews.

[5]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[6]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[7]  Michale S Fee,et al.  Miniature motorized microdrive and commutator system for chronic neural recording in small animals , 2001, Journal of Neuroscience Methods.

[8]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[9]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Johannes J. Letzkus,et al.  Dendritic patch-clamp recording , 2006, Nature Protocols.

[12]  B Messerschmidt,et al.  Endoscope-compatible confocal microscope using a gradient index-lens system , 2001 .

[13]  F. Helmchen,et al.  Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. , 2004, Optics letters.

[14]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[15]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[16]  W. N. Ross,et al.  High time resolution fluorescence imaging with a CCD camera , 1991, Journal of Neuroscience Methods.

[17]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[18]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[19]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[20]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[21]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[22]  O. Garaschuk,et al.  Cortical calcium waves in resting newborn mice , 2005, Nature Neuroscience.

[23]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[24]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[25]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[26]  Oliver Griesbeck,et al.  Fluorescent proteins as sensors for cellular functions , 2004, Current Opinion in Neurobiology.

[27]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[28]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[29]  A. Ogura,et al.  A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: Its application to hippocampal neurons in vitro and in vivo , 1992, Neuroscience.

[30]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[31]  F. Helmchen,et al.  Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. , 2008, Optics express.

[32]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[33]  R. Llinás,et al.  Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[35]  Masanori Murayama,et al.  Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. , 2007, Journal of neurophysiology.

[36]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[37]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.