Advances on the Application of Wide Band‐Gap Insulating Materials in Perovskite Solar Cells

In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.

[1]  S. Basak,et al.  Buried Interface Passivation of Perovskite Solar Cells by Atomic Layer Deposition of Al2O3 , 2023, ACS Energy Letters.

[2]  Q. Song,et al.  Mitigating Surface Deficiencies of Perovskite Single Crystals Enables Efficient Solar Cells with Enhanced Moisture and Reverse‐Bias Stability , 2023, Advanced Functional Materials.

[3]  Zheng Hong Zhu,et al.  Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact , 2023, Science.

[4]  Kaiwen Liang,et al.  Perovskite Solar Cells in the Shadow: Understanding the Mechanism of Reverse‐Bias Behavior toward Suppressed Reverse‐Bias Breakdown and Reverse‐Bias Induced Degradation , 2023, Advanced Energy Materials.

[5]  Christos E. Athanasiou,et al.  Dual‐Interface‐Reinforced Flexible Perovskite Solar Cells for Enhanced Performance and Mechanical Reliability , 2022, Advanced materials.

[6]  P. Yadav,et al.  Facile NaF Treatment Achieves 20% Efficient ETL-Free Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[7]  W. Soboyejo,et al.  Effects of polyethylene oxide particles on the photo-physical properties and stability of FA-rich perovskite solar cells , 2022, Scientific Reports.

[8]  Wenjun Wu,et al.  Surface Lattice Perturbation of Electron Transport Layer Reducing Oxygen Vacancies for Positive Photovoltaic Effect , 2022, Solar RRL.

[9]  Jivan Thakare,et al.  Recent Criterion on Stability Enhancement of Perovskite Solar Cells , 2022, Processes.

[10]  Fanghui Zhang,et al.  Polymer passivation of defects in inorganic perovskite solar cells , 2022, Optoelectronics Letters.

[11]  B. González-Díaz,et al.  Characterization of a New Low Temperature Encapsulation Method with Ethylene-Vinyl Acetate under UV Irradiation for Perovskite Solar Cells , 2022, Applied Sciences.

[12]  Xiaohong Chen,et al.  Excellent Stability of Perovskite Solar Cells Encapsulated With Paraffin/Ethylene-Vinyl Acetate/Paraffin Composite Layer , 2022, Frontiers in Materials.

[13]  Weiqi Wang,et al.  A multifunctional piperidine-based modulator for printable mesoscopic perovskite solar cells , 2022, Chemical Engineering Journal.

[14]  Junshuai Zhang,et al.  Multifunctional Polymer Capping Frameworks Enable High-Efficiency and Stable All-Inorganic Perovskite Solar Cells , 2022, ACS Applied Energy Materials.

[15]  M. Nazeeruddin,et al.  Employing 2D‐Perovskite as an Electron Blocking Layer in Highly Efficient (18.5%) Perovskite Solar Cells with Printable Low Temperature Carbon Electrode , 2022, Advanced Energy Materials.

[16]  Langxing Chen,et al.  Near 90% Transparent ITO-Based Flexible Electrode with Double-Sided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices. , 2022, Small.

[17]  Xingzhu Wang,et al.  Highly Orientational Order Perovskite Induced by In situ-generated 1D Perovskitoid for Efficient and Stable Printable Photovoltaics. , 2022, Small.

[18]  J. Xiong,et al.  Perovskite Films Treated with Polyvinyl Pyrrolidone for High-Performance Inverted Perovskite Solar Cells , 2022, ACS Applied Energy Materials.

[19]  H. Jung,et al.  Rational selection of the polymeric structure for interface engineering of perovskite solar cells , 2022, Joule.

[20]  E. Drouard,et al.  Light Management in Perovskite Photovoltaic Solar Cells: A Perspective , 2022, Advanced Energy Materials.

[21]  J. Bullock,et al.  Carrier‐selective contacts using metal compounds for crystalline silicon solar cells , 2022, Progress in Photovoltaics: Research and Applications.

[22]  I. Kaya,et al.  Spray-Pyrolyzed Tantalium-Doped TiO2 Compact Electron Transport Layer for UV-Photostable Planar Perovskite Solar Cells Exceeding 20% Efficiency , 2022, ACS Applied Energy Materials.

[23]  Yaowen Li,et al.  High‐Polarizability Organic Ferroelectric Materials Doping for Enhancing the Built‐In Electric Field of Perovskite Solar Cells Realizing Efficiency over 24% , 2022, Advanced materials.

[24]  Bowen Gao,et al.  Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing , 2021, Solar Energy.

[25]  K. Leo,et al.  Effects of photon recycling and scattering in high-performance perovskite solar cells , 2021, Science advances.

[26]  Yue Hu,et al.  Minimizing the Voltage Loss in Hole‐Conductor‐Free Printable Mesoscopic Perovskite Solar Cells , 2021, Advanced Energy Materials.

[27]  L. Marsal,et al.  Nanoporous anodic alumina with ohmic contact between substrate and infill: Application to perovskite solar cells , 2021, Energy Science & Engineering.

[28]  Jing Zhang,et al.  Heterojunction Engineering and Ideal Factor Optimization Toward Efficient MINP Perovskite Solar Cells , 2021, Advanced Energy Materials.

[29]  Yiwang Chen,et al.  A Regularity‐Based Fullerene Interfacial Layer for Efficient and Stable Perovskite Solar Cells via Blade‐Coating , 2021, Advanced Functional Materials.

[30]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[31]  Yan Zhang,et al.  Piezophototronic Effect Enhanced Perovskite Solar Cell Based on P(VDF‐TrFE) , 2021, Solar RRL.

[32]  Dong Hoe Kim,et al.  Intermediate Phase‐Free Process for Methylammonium Lead Iodide Thin Film for High‐Efficiency Perovskite Solar Cells , 2021, Advanced science.

[33]  D. Zou,et al.  Organic‐Inorganic Perovskite Films and Efficient Planar Heterojunction Solar Cells by Magnetron Sputtering , 2021, Advanced science.

[34]  S. Zakeeruddin,et al.  A Fully Printable Hole‐Transporter‐Free Semi‐Transparent Perovskite Solar Cell , 2021, European Journal of Inorganic Chemistry.

[35]  Geethika K. Liyanage,et al.  Protecting Perovskite Solar Cells against Moisture-Induced Degradation with Sputtered Inorganic Barrier Layers , 2021, ACS Applied Energy Materials.

[36]  A. Tiwari,et al.  Physical Passivation of Grain Boundaries and Defects in Perovskite Solar Cells by an Isolating Thin Polymer , 2021, ACS Energy Letters.

[37]  Zhenghong Lu,et al.  Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices , 2021, Advanced materials.

[38]  Xiao-Xiao Ding,et al.  Preparation of CsPbBr3 Films for Efficient Perovskite Solar Cells from Aqueous Solutions , 2021, ACS Applied Energy Materials.

[39]  Haiying Zheng,et al.  Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive , 2021, Journal of Energy Chemistry.

[40]  S. Albrecht,et al.  Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells , 2021, ACS applied materials & interfaces.

[41]  Y. Qi,et al.  Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability , 2021, Science.

[42]  Sumei Huang,et al.  Enhanced Efficiency and Stability of NiOx-Based Perovskite Solar Cells Using [6,6]-Phenyl-C61-butyric Acid Methyl-Doped Poly(9-vinylcarbazole)-Modified Layer , 2021 .

[43]  Xuanhua Li,et al.  The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22% , 2021 .

[44]  Jinzhen Huang,et al.  Mechanism of Bifunctional p-amino Benzenesulfonic Acid Modified Interface in Perovskite Solar Cells , 2021 .

[45]  Zikang Tang,et al.  Polymer strategies for high-efficiency and stable perovskite solar cells , 2021 .

[46]  Siqi Li,et al.  All room-temperature processing efficient planar carbon-based perovskite solar cells , 2021 .

[47]  Yuejin Zhu,et al.  Enhanced Selective Charge Collection with Metal–Insulator–Semiconductor Junction in Electron Transport Layer‐Free Perovskite Solar Cells , 2021, Advanced Electronic Materials.

[48]  L. Etgar,et al.  Photovoltaic Recovery of All Printable Mesoporous‐Carbon‐based Perovskite Solar Cells , 2021, Solar RRL.

[49]  Tiankai Zhang,et al.  Construction of an Iodine Diffusion Barrier Using Network Structure Silicone Resin for Stable Perovskite Solar Cells. , 2021, ACS applied materials & interfaces.

[50]  Yuejin Zhu,et al.  p–n heterojunction perovskite solar cell with bilateral Ohmic contacts , 2021 .

[51]  Ruixiang Peng,et al.  Efficient Electron Transport Layer-Free Perovskite Solar Cells Enabled by Discontinuous Polar Molecular Films: A Story of New Materials and Old Ideas? , 2021 .

[52]  Tae Woong Kim,et al.  Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking , 2020 .

[53]  S. Rossnagel Magnetron sputtering , 2020, Journal of Vacuum Science & Technology A.

[54]  Wei Zhang,et al.  Sputtered Ga-Doped SnOx Electron Transport Layer for Large-Area All-Inorganic Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[55]  T. Brown,et al.  Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells , 2020, ACS applied materials & interfaces.

[56]  Yongqi Yin,et al.  Stable and Efficient Tin-Based Perovskite Solar Cell via Semiconducting–Insulating Structure , 2020 .

[57]  Haibo Li,et al.  Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment , 2020 .

[58]  Yongli Gao,et al.  Triphenylamine–Polystyrene Blends for Perovskite Solar Cells with Simultaneous Energy Loss Suppression and Stability Improvement , 2020 .

[59]  Zhipeng Ci,et al.  Crystallization Kinetics in 2D Perovskite Solar Cells , 2020, Advanced Energy Materials.

[60]  D. Kuang,et al.  Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells , 2020 .

[61]  Liduo Wang,et al.  RbF modified FTO electrode enable energy-level matching for efficient electron transport layer-free perovskite solar cells , 2020 .

[62]  Jinsong Huang,et al.  Suppressing Interfacial Charge Recombination in Electron Transport Layer-Free Perovskite Solar Cells with Efficiency Exceeding 21. , 2020, Angewandte Chemie.

[63]  Hongyu Yu,et al.  High performance of La-doped Y2O3 transparent ceramics , 2020, Journal of Advanced Ceramics.

[64]  Zhigang Zang,et al.  Interface Modulator of Ultrathin Magnesium Oxide for Low‐Temperature‐Processed Inorganic CsPbIBr 2 Perovskite Solar Cells with Efficiency Over 11% , 2020 .

[65]  Liang Li,et al.  Optical Design in Perovskite Solar Cells , 2020, Small Methods.

[66]  Yiwang Chen,et al.  Stretchable perovskite solar cells with extremely recoverable performance. , 2020, Angewandte Chemie.

[67]  Tai-De Li,et al.  Enhancing Chemical Stability and Suppressing Ion Migration in CH3NH3PbI3 Perovskite Solar Cells via Direct Backbone Attachment of Polyesters on Grain Boundaries , 2020, Chemistry of Materials.

[68]  Wei Huang,et al.  Composite encapsulation enabled superior comprehensive stability of perovskite solar cells. , 2020, ACS applied materials & interfaces.

[69]  Zhiyong Liu,et al.  Tuning Surface Wettability of Buffer Layers by Incorporating Polyethylene Glycols for Enhanced Performances of Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[70]  Kai Wang,et al.  High-Performance Perovskite Solar Cells by One-Step Self-Assembled Perovskite-Polymer Thin Films , 2020, ACS Applied Energy Materials.

[71]  Y. Abdi,et al.  Enhanced photovoltaic performance and stability of perovskite solar cells by interface engineering with poly(4-vinylpyridine) and Cu2ZnSnS4&CNT , 2020 .

[72]  Xiangmei Liu,et al.  Highly Stable and Efficient Mesoporous and Hollow Silica Antireflection Coatings for Perovskite Solar Cells , 2020, ACS Applied Energy Materials.

[73]  Guofu Zhou,et al.  Vacuum Controlled Growth of CsPbI2Br for Highly Efficient and Stable All Inorganic Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[74]  Yuzhu Li,et al.  Room-Temperature-Processed ZrO2 Interlayer toward Efficient Planar Perovskite Solar Cells , 2020 .

[75]  Yiwang Chen,et al.  Regulated Crystallization of Efficient and Stable Tin-based Perovskite Solar Cells via Self-sealing Polymer. , 2020, ACS applied materials & interfaces.

[76]  Yang Yang,et al.  Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation , 2020 .

[77]  M. Askari,et al.  Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells , 2020 .

[78]  S. Jang,et al.  Newly-Developed Broadband Anti-Reflective Nanostructure by Coating Low-index MgF2 Film onto a SiO2 Moth-eye Nano-pattern. , 2020, ACS applied materials & interfaces.

[79]  A. Hinsch,et al.  Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultrathin Al2O3 Isolating Layer , 2020, ACS applied nano materials.

[80]  Sai Ma,et al.  1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation , 2020, Advanced Energy Materials.

[81]  Y. Qi,et al.  Reducing Detrimental Defects for High‐Performance Metal Halide Perovskite Solar Cells , 2020, Angewandte Chemie.

[82]  Jinhyun Kim,et al.  Interfacial Modification and Defect Passivation by Crosslinking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cell. , 2019, ACS applied materials & interfaces.

[83]  S. Bent,et al.  Enhanced Nucleation of Atomic Layer Deposited Contacts Improves Operational Stability of Perovskite Solar Cells in Air , 2019, Advanced Energy Materials.

[84]  Y. Mai,et al.  The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification , 2019, Journal of Energy Chemistry.

[85]  S. Seok,et al.  Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Energy Materials.

[86]  Xingwang Zhang,et al.  Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[87]  K. Zhu,et al.  Additive Engineering for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Energy Materials.

[88]  G. Fang,et al.  Vitrification Transformation of Poly(Ethylene Oxide) Activating Interface Passivation for High‐Efficiency Perovskite Solar Cells , 2019, Solar RRL.

[89]  Yiming Li,et al.  A Simple Way to Simultaneously Release the Interface Stress and Realize the Inner Encapsulation for Highly Efficient and Stable Perovskite Solar Cells , 2019, Advanced Functional Materials.

[90]  Thomas G. Allen,et al.  Passivating contacts for crystalline silicon solar cells , 2019, Nature Energy.

[91]  Takeshi Noda,et al.  Highly Stable and Efficient FASnI3‐Based Perovskite Solar Cells by Introducing Hydrogen Bonding , 2019, Advanced materials.

[92]  B. Rand,et al.  Electrochemical and Thermal Etching of Indium Tin Oxide by Solid-State Hybrid Organic–Inorganic Perovskites , 2019, ACS Applied Energy Materials.

[93]  A. Carlo,et al.  The effect of water in Carbon-Perovskite Solar Cells with optimized alumina spacer , 2019, Solar Energy Materials and Solar Cells.

[94]  Yanlin Song,et al.  Water‐Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer , 2019, Advanced Functional Materials.

[95]  Yulin Yang,et al.  A Copper Coordination Polymer with Matching Energy Level for Modifying Hole Transport Layers to Improve the Performance of Perovskite Solar Cells. , 2019, ChemSusChem.

[96]  Yang Yang,et al.  Polarized Ferroelectric Polymers for High‐Performance Perovskite Solar Cells , 2019, Advanced materials.

[97]  L. T. Do,et al.  Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[98]  Baoquan Sun,et al.  Fabricating CsPbX3-Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX3/ZrO2 Nanocrystals. , 2019, ACS nano.

[99]  J. Dendooven,et al.  Conformality in atomic layer deposition: Current status overview of analysis and modelling , 2019, Applied Physics Reviews.

[100]  Jinming Gao,et al.  Targeting the Oncogene KRAS Mutant Pancreatic Cancer by Synergistic Blocking of Lysosomal Acidification and Rapid Drug Release. , 2019, ACS nano.

[101]  T. Bein,et al.  Universal Nanoparticle Wetting Agent for Upscaling Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[102]  S. Bent,et al.  Opportunities for Atomic Layer Deposition in Emerging Energy Technologies , 2019, ACS Energy Letters.

[103]  Wei Chen,et al.  A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells , 2019, Nature Communications.

[104]  Jinsong Huang,et al.  Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics , 2019, ACS Energy Letters.

[105]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[106]  N. Park,et al.  On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis , 2019, Advanced materials.

[107]  Yang Yang,et al.  Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices , 2019, Advanced materials.

[108]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[109]  Yue Hu,et al.  Encapsulation of Printable Mesoscopic Perovskite Solar Cells Enables High Temperature and Long‐Term Outdoor Stability , 2019, Advanced Functional Materials.

[110]  C. Ballif,et al.  Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells , 2019, Solar Energy Materials and Solar Cells.

[111]  B. Richards,et al.  Electron‐Beam‐Evaporated Nickel Oxide Hole Transport Layers for Perovskite‐Based Photovoltaics , 2019, Advanced Energy Materials.

[112]  L. Qiu,et al.  Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface , 2019, Advanced materials.

[113]  Ashraf Uddin,et al.  Encapsulation of Organic and Perovskite Solar Cells: A Review , 2019, Coatings.

[114]  Hongyu Liu,et al.  Employing tetraethyl orthosilicate additive to enhance trap passivation of planar perovskite solar cells , 2019, Electrochimica Acta.

[115]  David Cahen,et al.  Halide Perovskites: Is It All about the Interfaces? , 2018, Chemical reviews.

[116]  A. Ho-baillie,et al.  Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation , 2018, Solar Energy Materials and Solar Cells.

[117]  Yan Zhang,et al.  Theory of piezotronics and piezo-phototronics , 2018, MRS Bulletin.

[118]  Jihuai Wu,et al.  Influence of Polymer Additives on the Efficiency and Stability of Ambient-Air Solution-Processed Planar Perovskite Solar Cells , 2018, Energy Technology.

[119]  Bo Li,et al.  Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation , 2018, The Journal of Physical Chemistry C.

[120]  S. Glunz,et al.  SiO2 surface passivation layers – a key technology for silicon solar cells , 2018, Solar Energy Materials and Solar Cells.

[121]  K. Catchpole,et al.  A Universal Double‐Side Passivation for High Open‐Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) , 2018, Advanced Energy Materials.

[122]  X. Wen,et al.  Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. , 2018, ACS nano.

[123]  G. Fang,et al.  Efficient and Stable Nonfullerene‐Graded Heterojunction Inverted Perovskite Solar Cells with Inorganic Ga2O3 Tunneling Protective Nanolayer , 2018, Advanced Functional Materials.

[124]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[125]  Guofu Zhou,et al.  Wide‐Bandgap Perovskite Solar Cells With Large Open‐Circuit Voltage of 1653 mV Through Interfacial Engineering , 2018 .

[126]  M. Wong,et al.  Achieving High Open-Circuit Voltage for p-i-n Perovskite Solar Cells Via Anode Contact Engineering , 2018, Solar RRL.

[127]  F. Cacialli,et al.  Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers , 2018, Nano Energy.

[128]  N. Kosugi,et al.  Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process , 2018, Advanced materials.

[129]  Dong Hoe Kim,et al.  Stable Formamidinium‐Based Perovskite Solar Cells via In Situ Grain Encapsulation , 2018, Advanced Energy Materials.

[130]  Yue Zhang,et al.  Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[131]  Yue Hu,et al.  Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. , 2018, The journal of physical chemistry letters.

[132]  Philip Schulz,et al.  Interface Design for Metal Halide Perovskite Solar Cells , 2018 .

[133]  R. Friend,et al.  Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells , 2018 .

[134]  J. Bisquert,et al.  Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment , 2018 .

[135]  Abdullah M. Asiri,et al.  Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells , 2018 .

[136]  Michael E. A. Warwick,et al.  Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells , 2018 .

[137]  Liyuan Han,et al.  Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch , 2018 .

[138]  Yue Hu,et al.  Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode , 2018 .

[139]  Dong Hyun Kim,et al.  Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer. , 2018, ACS applied materials & interfaces.

[140]  Longwei Yin,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[141]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[142]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[143]  Y. Murata,et al.  Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering , 2018 .

[144]  Jacky Even,et al.  Theoretical Treatment of CH3 NH3 PbI3 Perovskite Solar Cells. , 2017, Angewandte Chemie.

[145]  N. Zheng,et al.  Improving Efficiency and Stability of Perovskite Solar Cells by Modifying Mesoporous TiO2–Perovskite Interfaces with Both Aminocaproic and Caproic acids , 2017 .

[146]  E. Kauppinen,et al.  Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode , 2017 .

[147]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[148]  Yue Hu,et al.  Improvement and Regeneration of Perovskite Solar Cells via Methylamine Gas Post‐Treatment , 2017 .

[149]  Yiwang Chen,et al.  Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance , 2017 .

[150]  M. Wong,et al.  Overcoming the Limitations of Sputtered Nickel Oxide for High‐Efficiency and Large‐Area Perovskite Solar Cells , 2017, Advanced science.

[151]  Liangcong Jiang,et al.  Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells. , 2017, ChemSusChem.

[152]  Shangfeng Yang,et al.  Nonconjugated Polymer Poly(vinylpyrrolidone) as an Efficient Interlayer Promoting Electron Transport for Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[153]  Yang Yang,et al.  A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells , 2017 .

[154]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[155]  Zhiqiang Feng,et al.  Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. , 2017, ACS applied materials & interfaces.

[156]  E. Diau,et al.  Interfacial Investigation on Printable Carbon-Based Mesoscopic Perovskite Solar Cells with NiOx/C Back Electrode. , 2017, ACS applied materials & interfaces.

[157]  Bernd Rech,et al.  Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells , 2017, Advanced science.

[158]  W. Tress Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open‐Circuit Voltage and Low Recombination , 2017 .

[159]  M. Ikegami,et al.  Poly(4-Vinylpyridine)-Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. , 2017, ChemSusChem.

[160]  King-Fu Lin,et al.  Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. , 2017, Small.

[161]  Seung Goo Lee,et al.  Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. , 2017, ACS applied materials & interfaces.

[162]  H. Jung,et al.  Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments , 2017, Nano Research.

[163]  Xingzhong Zhao,et al.  MgO Nanoparticle Modified Anode for Highly Efficient SnO2‐Based Planar Perovskite Solar Cells , 2017, Advanced science.

[164]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[165]  Xu Han,et al.  PVDF‐Based Ferroelectric Polymers in Modern Flexible Electronics , 2017 .

[166]  M. Winter,et al.  A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries. , 2017, ACS nano.

[167]  Xueping Gao,et al.  Non-precious transition metals as counter electrode of perovskite solar cells , 2017 .

[168]  Meicheng Li,et al.  Highly Efficient Electron‐Selective Layer Free Perovskite Solar Cells by Constructing Effective p–n Heterojunction , 2017 .

[169]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[170]  A. Jen,et al.  SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole‐Conductor‐Free Fully Printable Mesoscopic Perovskite Solar Cells , 2017, Advanced materials.

[171]  K. Meerholz,et al.  Substrate-dependent electronic structure and film formation of MAPbI3 perovskites , 2017, Scientific Reports.

[172]  K. Matsuki,et al.  Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer , 2017 .

[173]  M. Bär,et al.  Perovskite solar cells: Danger from within , 2017, Nature Energy.

[174]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[175]  Yongzhen Wu,et al.  Enhanced Stability of Perovskite Solar Cells through Corrosion‐Free Pyridine Derivatives in Hole‐Transporting Materials , 2016, Advanced materials.

[176]  Y. Hao,et al.  Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells , 2016 .

[177]  Yanlin Song,et al.  Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[178]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[179]  D. Fu,et al.  Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer. , 2016, ACS applied materials & interfaces.

[180]  Jinli Yang,et al.  Comparing the Effect of Mesoporous and Planar Metal Oxides on the Stability of Methylammonium Lead Iodide Thin Films , 2016 .

[181]  Yue Hu,et al.  Efficient Compact-Layer-Free, Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell. , 2016, The journal of physical chemistry letters.

[182]  Maximilian T. Hörantner,et al.  Interfacial electron accumulation for efficient homo-junction perovskite solar cells , 2016 .

[183]  Wai Kin Chan,et al.  Encapsulation of Perovskite Solar Cells for High Humidity Conditions. , 2016, ChemSusChem.

[184]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells. , 2016, ChemSusChem.

[185]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[186]  Xin Cai,et al.  Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds , 2016 .

[187]  Yue Hu,et al.  Solvent effect on the hole-conductor-free fully printable perovskite solar cells , 2016 .

[188]  Dapeng Yu,et al.  Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network , 2016 .

[189]  V. Naumann,et al.  Study of Pinhole Conductivity at Passivated Carrier-selected Contacts of Silicon Solar Cells☆ , 2016 .

[190]  Anders Hagfeldt,et al.  Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.

[191]  Ho Won Jang,et al.  Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells , 2016 .

[192]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[193]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[194]  M. Grätzel,et al.  Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells , 2016, Advanced materials.

[195]  Konrad Wojciechowski,et al.  Shunt‐Blocking Layers for Semitransparent Perovskite Solar Cells , 2016 .

[196]  Yong Li,et al.  An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability , 2016 .

[197]  Qingfeng Dong,et al.  Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells , 2016 .

[198]  T. Miyasaka,et al.  Impacts of Heterogeneous TiO2 and Al2O3 Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[199]  Martin A. Green,et al.  Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[200]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[201]  A. Di Carlo,et al.  In situ observation of heat-induced degradation of perovskite solar cells , 2016, Nature Energy.

[202]  Heng Li,et al.  A polymer scaffold for self-healing perovskite solar cells , 2016, Nature Communications.

[203]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[204]  S. Uchida,et al.  Origin of the Hysteresis in I–V Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary-induced Capacitance Model , 2015 .

[205]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[206]  Kemin Wang,et al.  Encapsulation of PV Modules Using Ethylene Vinyl Acetate Copolymer as the Encapsulant , 2015 .

[207]  Yan Shen,et al.  Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture , 2015 .

[208]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[209]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[210]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[211]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[212]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[213]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[214]  Xudong Guo,et al.  Multifunctional MgO Layer in Perovskite Solar Cells. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[215]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[216]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[217]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[218]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[219]  Tao Wu,et al.  Impact of annealing on spiro‐OMeTAD and corresponding solid‐state dye sensitized solar cells , 2014 .

[220]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[221]  Sandeep Kumar Pathak,et al.  Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2 , 2014 .

[222]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[223]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[224]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[225]  W. Li,et al.  Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction. , 2014, ACS applied materials & interfaces.

[226]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[227]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[228]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[229]  H. Momose,et al.  Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[230]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[231]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics—fundamentals and applications , 2014 .

[232]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[233]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[234]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[235]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[236]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[237]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[238]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[239]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[240]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[241]  Sonia Leva,et al.  Experimental investigation of partial shading scenarios on PV (photovoltaic) modules , 2013 .

[242]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[243]  Mengyuan Li,et al.  Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. , 2013, Nature materials.

[244]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[245]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[246]  Soonil Hong,et al.  Electrostatically Self‐Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells , 2012, Advanced materials.

[247]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[248]  R. Turan,et al.  Effects of physical growth conditions on the structural and optical properties of sputtered grown thin HfO2 films , 2011 .

[249]  Tina C. Li,et al.  Surface passivation of nanoporous TiO 2 via atomic layer deposition of ZrO 2 for solid-state dye-sensitized solar cell applications , 2009 .

[250]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[251]  M. Frigione,et al.  Photo – DSC and real time – FT-IR kinetic study of a UV curable epoxy resin containing o-Boehmites , 2008 .

[252]  Michael Grätzel,et al.  Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide , 2002 .

[253]  A. Stesmans,et al.  Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2 , 2002 .

[254]  F. Pern,et al.  Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review , 1996 .

[255]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[256]  J. Shewchun,et al.  Theory of metal‐insulator‐semiconductor solar cells , 1977 .

[257]  Mietek Jaroniec,et al.  Heterojunction Photocatalysts , 2017, Advanced materials.

[258]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.