A somatic reference standard for cancer genome sequencing

[1]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[2]  Gonçalo R. Abecasis,et al.  Unified representation of genetic variants , 2015, Bioinform..

[3]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[4]  R. C. Poulos,et al.  Systematic Screening of Promoter Regions Pinpoints Functional Cis-Regulatory Mutations in a Cutaneous Melanoma Genome , 2015, Molecular Cancer Research.

[5]  Stephen C Peiper,et al.  Validation of a next-generation-sequencing cancer panel for use in the clinical laboratory. , 2015, Archives of pathology & laboratory medicine.

[6]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[7]  D. Brash UV Signature Mutations , 2015, Photochemistry and photobiology.

[8]  Jason R. Myers,et al.  Comparison of insertion/deletion calling algorithms on human next-generation sequencing data , 2014, BMC Research Notes.

[9]  Leslie Cope,et al.  Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. , 2014, American journal of clinical pathology.

[10]  Eric E Schadt,et al.  Analytical validation of whole exome and whole genome sequencing for clinical applications , 2014, BMC Medical Genomics.

[11]  Sandra Krüger,et al.  Melanomas of unknown primary frequently harbor TERT-promoter mutations , 2014, Melanoma research.

[12]  J. Zook,et al.  Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls , 2013, Nature Biotechnology.

[13]  V. Saddi,et al.  Analysis of the BRAF V600E mutation in primary cutaneous melanoma. , 2014, Genetics and molecular research : GMR.

[14]  Winnie S. Liang,et al.  Long insert whole genome sequencing for copy number variant and translocation detection , 2013, Nucleic acids research.

[15]  Ravi Vijaya Satya,et al.  Comparison of somatic mutation calling methods in amplicon and whole exome sequence data , 2014, BMC Genomics.

[16]  Scott L. Pomeroy,et al.  TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma , 2013, Acta Neuropathologica.

[17]  David T. W. Jones,et al.  Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system , 2013, Acta Neuropathologica.

[18]  Peilin Jia,et al.  Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers , 2013, Genome Medicine.

[19]  Rashmi Kanagal-Shamanna,et al.  Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. , 2013, The Journal of molecular diagnostics : JMD.

[20]  P. Kleihues,et al.  TERT promoter mutations in primary and secondary glioblastomas , 2013, Acta Neuropathologica.

[21]  Semyon Kruglyak,et al.  Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms , 2013, Bioinform..

[22]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[23]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[24]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[25]  J. Carpten,et al.  Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs , 2013 .

[26]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[27]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[28]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[29]  Juliane C. Dohm,et al.  Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems , 2011, Genome Biology.

[30]  Christophe Dessimoz,et al.  Base-calling for next-generation sequencing platforms , 2011, Briefings Bioinform..

[31]  Simon Tavaré,et al.  CNAseg - a novel framework for identification of copy number changes in cancer from second-generation sequencing data , 2010, Bioinform..

[32]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[33]  Steven J. M. Jones,et al.  Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors , 2010, Genome Biology.

[34]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[35]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[36]  Claus Garbe,et al.  Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight. , 2008, Advances in experimental medicine and biology.

[37]  G. Pfeifer,et al.  Mutations induced by ultraviolet light. , 2005, Mutation research.

[38]  W. Pearson,et al.  Current Protocols in Bioinformatics , 2002 .

[39]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[40]  B. Armstrong,et al.  The epidemiology of UV induced skin cancer. , 2001, Journal of photochemistry and photobiology. B, Biology.

[41]  S. Oikawa,et al.  Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. , 2001, Mutation research.

[42]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .