Surface Meshing with Curvature Convergence

Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm.

[1]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[2]  J. Nash C 1 Isometric Imbeddings , 1954 .

[3]  Jean-Marie Morvan,et al.  Approximation of the Normal Vector Field and the Area of a Smooth Surface , 2004, Discret. Comput. Geom..

[4]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[5]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[6]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[7]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[9]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[10]  Shi-Qing Xin,et al.  Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation , 2011, 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering.

[11]  Tamal K. Dey,et al.  Polygonal surface remeshing with Delaunay refinement , 2010, Engineering with Computers.

[12]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[13]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[14]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[15]  Lok Ming Lui,et al.  DETECTION OF SHAPE DEFORMITIES USING YAMABE FLOW AND BELTRAMI COEFFICIENTS , 2010 .

[16]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[17]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[18]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[19]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[20]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Shing-Tung Yau,et al.  Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.

[22]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[23]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[24]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[25]  Paul M. Thompson,et al.  Surface parameterization using Riemann surface structure , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  Jean-Marie Morvan,et al.  Generalized Curvatures , 2008, Geometry and Computing.

[27]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[28]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[29]  Christophe Geuzaine,et al.  High‐quality surface remeshing using harmonic maps—Part II: Surfaces with high genus and of large aspect ratio , 2011 .

[30]  Christophe Geuzaine,et al.  High‐quality surface remeshing using harmonic maps , 2010 .

[31]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[32]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[33]  K. Hormann,et al.  Hierarchical Parametrization of Triangulated Surfaces , 2002 .

[34]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[35]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[36]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[37]  Joshua A. Levine,et al.  Delaunay Meshing of Isosurfaces , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[38]  Philip L. Bowers,et al.  Coordinate systems for conformal cerebellar flat maps , 2000, NeuroImage.

[39]  Sen Wang,et al.  High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.

[40]  Christophe Geuzaine,et al.  Quality Surface Meshing Using Discrete Parametrizations , 2011, IMR.

[41]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[42]  H. Fédérer Geometric Measure Theory , 1969 .

[43]  Stefan Funke,et al.  Smooth-surface reconstruction in near-linear time , 2002, SODA '02.

[44]  D. Cohen-Steiner,et al.  SECOND FUNDAMENTAL MEASURE OF GEOMETRIC SETS AND LOCAL APPROXIMATION OF CURVATURES , 2006 .

[45]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .

[46]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[47]  DuQiang,et al.  Centroidal Voronoi Tessellations , 1999 .

[48]  Shing-Tung Yau,et al.  Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.

[49]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[50]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .