Convex Hull and Voronoi Diagram of Additively Weighted Points
暂无分享,去创建一个
[1] Rajeev Raman,et al. Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.
[2] Ioannis Z. Emiris,et al. ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .
[3] Stefan Arnborg,et al. Algorithm Theory — SWAT'98 , 1998, Lecture Notes in Computer Science.
[4] Mariette Yvinec,et al. Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.
[5] François Anton,et al. Voronoi diagrams of semi-algebraic sets , 2003 .
[6] Sangsoo Kim,et al. Euclidean Voronoi diagrams of 3D spheres and applications to protein structure analysis , 2005 .
[7] Mariette Yvinec,et al. Variational tetrahedral meshing , 2005, ACM Trans. Graph..
[8] Marina L. Gavrilova,et al. Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..
[9] Ioannis Z. Emiris,et al. Root comparison techniques applied to computing the additively weighted Voronoi diagram , 2003, SODA '03.
[10] Steve Oudot,et al. Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.
[11] Hans-Martin Will. Fast and Efficient Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology , 1998, SWAT.
[12] Jean-Daniel Boissonnat,et al. Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .
[13] Mariette Yvinec,et al. An Algorithm for Constructing the Convex Hull of a Set of Spheres in Dimension D , 1996, Comput. Geom..
[14] Franz Aurenhammer,et al. Geometric Relations Among Voronoi Diagrams , 1987, STACS.