Convex Hull and Voronoi Diagram of Additively Weighted Points

We provide a complete description of dynamic algorithms for constructing convex hulls and Voronoi diagrams of additively weighted points of ${\mathbb R}^{d}$. We present simple algorithms and provide a description of the predicates. The algorithms have been implemented in ${\mathbb R}^{3}$ and experimental results are reported. Our implementation follows the CGAL design and, in particular, is made both robust and efficient through the use of filtered exact arithmetic.

[1]  Rajeev Raman,et al.  Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.

[2]  Ioannis Z. Emiris,et al.  ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .

[3]  Stefan Arnborg,et al.  Algorithm Theory — SWAT'98 , 1998, Lecture Notes in Computer Science.

[4]  Mariette Yvinec,et al.  Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.

[5]  François Anton,et al.  Voronoi diagrams of semi-algebraic sets , 2003 .

[6]  Sangsoo Kim,et al.  Euclidean Voronoi diagrams of 3D spheres and applications to protein structure analysis , 2005 .

[7]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[8]  Marina L. Gavrilova,et al.  Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..

[9]  Ioannis Z. Emiris,et al.  Root comparison techniques applied to computing the additively weighted Voronoi diagram , 2003, SODA '03.

[10]  Steve Oudot,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[11]  Hans-Martin Will Fast and Efficient Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology , 1998, SWAT.

[12]  Jean-Daniel Boissonnat,et al.  Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .

[13]  Mariette Yvinec,et al.  An Algorithm for Constructing the Convex Hull of a Set of Spheres in Dimension D , 1996, Comput. Geom..

[14]  Franz Aurenhammer,et al.  Geometric Relations Among Voronoi Diagrams , 1987, STACS.