Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics

<jats:p><jats:fig position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" orientation="portrait" mime-subtype="jpeg" mimetype="image" position="float" xlink:type="simple" xlink:href="S0883769418001574_figAb" /></jats:fig></jats:p>

[1]  D. Cann,et al.  Hardening in non-stoichiometric (1 − x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics , 2015, Journal of Materials Science.

[2]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[3]  V. G. Smotrakov,et al.  Structural phase transitions in PbZr1-x Tixo3 crystals , 1990 .

[4]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[5]  D. Berlincourt,et al.  Domain Processes in Lead Titanate Zirconate and Barium Titanate Ceramics , 1959 .

[6]  K. Härdtl,et al.  On the origin of the maximum in the electromechanical activity in Pb(ZrxTi1−x)O3 ceramies near the morphotropic phase boundary , 1971 .

[7]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[8]  Jacob L. Jones,et al.  Structure and properties of La-modified Na0.5Bi0.5TiO3 at ambient and elevated temperatures , 2012 .

[9]  Kenji Uchino,et al.  Heat generation in multilayer piezoelectric actuators , 1996 .

[10]  A. F. Devonshire Theory of ferroelectrics , 1954 .

[11]  G. Rossetti,et al.  Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states , 2008 .

[12]  Kenji Uchino,et al.  High Power Characteristics of Lead-Free Piezoelectric Ceramics , 2012 .

[13]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[14]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[15]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[16]  Bernard Jaffe,et al.  CHAPTER 2 – THE PIEZOELECTRIC EFFECT IN CERAMICS , 1971 .

[17]  L. Benguigui Thermodynamic theory of the morphotropic phase transition tetragonal-rhombohedral in the perovskite ferroelectrics , 1972 .

[18]  Rahul Vaish,et al.  BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives , 2017 .

[19]  G. Arlt,et al.  Internal bias in ferroelectric ceramics: Origin and time dependence , 1988 .

[20]  G. Arlt,et al.  Domain wall clamping in ferroelectrics by orientation of defects , 1993 .

[21]  G. Rossetti,et al.  Thermodynamics of polar anisotropy in morphotropic ferroelectric solid solutions , 2010 .

[22]  Piezoelectric response and free-energy instability in the perovskite crystals Ba Ti O 3 , Pb Ti O 3 , and Pb ( Zr , Ti ) O 3 , 2006, cond-mat/0604410.

[23]  D. Berlincourt Transducers Using Forced Transitions Between Ferroelectric and Antiferroelectric States , 1966, IEEE Transactions on Sonics and Ultrasonics.

[24]  Jacob L. Jones,et al.  Origins of Electro‐Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading , 2011 .

[25]  H. Beige,et al.  The Role of Ferroelectricity for Piezoelectric Materials , 2008 .

[26]  Masakazu Marutake,et al.  A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .

[27]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[28]  Dragan Damjanovic,et al.  Microstructure, structural defects, and piezoelectric response of Bi4Ti3O12 modified by Bi3TiNbO9 , 2000 .

[29]  X. Ren,et al.  In situ observation of reversible domain switching in aged Mn-doped BaTiO 3 single crystals , 2005 .

[30]  Nicola Marzari,et al.  Defect ordering and defect-domain-wall interactions in PbTiO3: A first-principles study , 2013, 1312.4701.

[31]  Dragan Damjanovic Hysteresis in Piezoelectric and Ferroelectric Materials , 2006 .

[32]  L. Benguigui,et al.  X-ray study of the PZT solid solutions near the morphotropic phase transition , 1974 .

[33]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .

[34]  N. Setter,et al.  A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy , 2007 .

[35]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[36]  K. H. Hardtl,et al.  Electrical after-effects in Pb(Ti, Zr)O3 ceramics , 1977 .

[37]  Gerbrand Ceder,et al.  Screening for high-performance piezoelectrics using high-throughput density functional theory , 2011 .

[38]  Thermodynamics of mono- and di-vacancies in barium titanate , 2007 .

[39]  Xiaobing Ren,et al.  Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching , 2004, Nature materials.

[40]  G. Rossetti,et al.  Thermodynamics of Ferroelectric Solid Solutions with Morphotropic Phase Boundaries , 2014 .

[41]  A. Khachaturyan Ferroelectric solid solutions with morphotropic boundary: Rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states , 2010 .

[42]  Julio A. Gonzalo,et al.  A monoclinic ferroelectric phase in the Pb(Zr{sub 1{minus}x}Ti{sub x})O{sub 3} solid solution , 1999 .

[43]  A. Tagantsev,et al.  Unusual dielectric behavior and domain structure in rhombohedral phase of BaTiO3 single crystals , 2011 .