Unidirectional Kondo scattering in layered NbS2
暂无分享,去创建一个
M. König | Quansheng Wu | H. Berger | O. Yazyev | E. Martino | L. Forr'o | C. Proust | C. Koch | H. Kirmse | D. Leboeuf | P. Moll | A. Akrap | C. Putzke | M. Leroux | K. Semeniuk | ShengNan Zhang
[1] S. Louie,et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy , 2021, Nature Physics.
[2] M. Watson,et al. Fermiology and electron-phonon coupling in the 2H and 3R polytypes of NbS2 , 2021 .
[3] F. Giustino,et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator , 2021, Science advances.
[4] P. Liljeroth,et al. Artificial heavy fermions in a van der Waals heterostructure , 2021, Nature.
[5] T. Klimczuk,et al. Polytypism and superconductivity in the NbS2 system. , 2021, Dalton transactions.
[6] S. Louie,et al. Imaging spinon density modulations in a 2D quantum spin liquid , 2020, 2009.07379.
[7] C. Autieri,et al. Charge density wave instability and pressure-induced superconductivity in bulk 1T−NbS2 , 2020, Physical Review B.
[8] Kenji Watanabe,et al. Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides , 2020, Nature Communications.
[9] T. Kurosawa,et al. Coexistence of the Kondo effect and spin glass physics in Fe-doped NbS2 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] L. Forró,et al. Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS2 , 2019, npj 2D Materials and Applications.
[11] J. Shan,et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.
[12] M. Calandra,et al. Charge density wave and spin 1/2 insulating state in single layer 1T-NbS2 , 2019, 2D Materials.
[13] O. Yazyev,et al. Charge density wave phase, Mottness, and ferromagnetism in monolayer 1T−NbSe2 , 2018, Physical Review B.
[14] M. Calandra. Phonon-Assisted Magnetic Mott-Insulating State in the Charge Density Wave Phase of Single-Layer 1T-NbSe_{2}. , 2018, Physical review letters.
[15] D. Jena,et al. Thickness dependence of superconductivity in ultrathin NbS2 , 2018, Applied Physics Express.
[16] P. Moll. Focused Ion Beam Microstructuring of Quantum Matter , 2018 .
[17] Takashi Taniguchi,et al. Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.
[18] L. Cario,et al. Traces of charge density waves in NbS 2 , 2018, 1801.08617.
[19] Xinsheng Wang,et al. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. , 2017, Nanoscale.
[20] E. R. Margine,et al. Origin of Superconductivity and Latent Charge Density Wave in NbS_{2}. , 2017, Physical review letters.
[21] K. T. Law,et al. Is 1T-TaS$_2$ a 40 year old quantum spin liquid? , 2017, 1704.06157.
[22] Matthias Troyer,et al. WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..
[23] R. Shull,et al. Kondo Effect in Magnetic Tunnel Junctions with an AlOx Tunnel Barrier. , 2016, Physics letters. A.
[24] Takashi Taniguchi,et al. Two-dimensional metallic NbS2: growth, optical identification and transport properties , 2016 .
[25] Timur K. Kim,et al. Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor , 2016, Nature Communications.
[26] R. Thomale,et al. Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet , 2016, 1601.06018.
[27] Zhong-Li Liu,et al. Novel high pressure structures and superconductivity of niobium disulfide , 2014, 1401.3398.
[28] A. Millis,et al. Visualizing the Charge Density Wave Transition in 2H-NbSe2 in Real Space , 2013, 1307.2282.
[29] A. Weichselbaum,et al. Iron impurities in gold and silver: Comparison of transport measurements to numerical renormalization group calculations exploiting non-Abelian symmetries , 2013, 1305.3551.
[30] M. Calandra,et al. Anharmonic suppression of charge density waves in 2H-NbS2 , 2012, 1210.2327.
[31] L. Cario,et al. Anisotropy and temperature dependence of the first critical field in 2H–NbS2 , 2012 .
[32] Bernhard Schaffer,et al. Sample preparation for atomic-resolution STEM at low voltages by FIB. , 2012, Ultramicroscopy.
[33] G. Scuseria,et al. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .
[34] Fujio Izumi,et al. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .
[35] K. Rossnagel. On the origin of charge-density waves in select layered transition-metal dichalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[36] L. Cario,et al. Specific heat measurements of a superconducting NbS2 single crystal in an external magnetic field: Energy gap structure , 2010, 1010.5630.
[37] P. Hirschfeld,et al. Theory of resistivity upturns in metallic cuprates , 2009, 0905.1449.
[38] A. Weichselbaum,et al. Kondo decoherence: finding the right spin model for iron impurities in gold and silver. , 2008, Physical review letters.
[39] L. Cario,et al. Superconducting density of states and vortex cores of 2H-NbS2. , 2008, Physical review letters.
[40] H. Alloul,et al. Defects in correlated metals and superconductors , 2007, 0711.0877.
[41] K. I. Lee,et al. Kondo effect in magnetic tunnel junctions. , 2007, Physical review letters.
[42] M. Johannes,et al. Fermi-surface nesting and the origin of the charge-density wave inNbSe2 , 2005, cond-mat/0510390.
[43] A. Geim,et al. Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.
[44] Emily S. Peters,et al. Formation of a new (1T) trigonal NbS2 polytype via atmospheric pressure chemical vapour depositionElectronic supplementary information (ESI) available: structure refinements of the NbS2 films and crystallographic data in CIF format. See http://www.rsc.org/suppdata/jm/b3/b315782m/ , 2004 .
[45] M. Calandra,et al. Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.
[46] A. K. Rastogi,et al. Low-temperature resistance minimum in non-superconducting 3R-Nb1+xS2 and 3R-GaxNbS2 , 2001, cond-mat/0107067.
[47] M. Kastner,et al. From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor , 1998, cond-mat/9807233.
[48] K. Hayashi,et al. Structural Stability of the 1T Structure on Transition-Metal Dichalcogenides , 1997 .
[49] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[50] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[51] Coles,et al. Thermoelectric power of concentrated Kondo systems. , 1993, Physical review. B, Condensed matter.
[52] Henry,et al. Out-of-plane conductivity of YBa2Cu3O7- delta. , 1992, Physical review. B, Condensed matter.
[53] B. Pfalzgraf,et al. The anisotropy of the upper critical field Hc2 and electrical resistivity in 2H-NbS2 , 1987 .
[54] Cox,et al. Self-consistent large-N expansion for normal-state properties of dilute magnetic alloys. , 1987, Physical review. B, Condensed matter.
[55] R. Aoki,et al. Effects of Organic Intercalation on Lattice Vibrations and Superconducting Properties of 2H–NbS2 , 1986 .
[56] Patrick A. Lee,et al. Disordered Electronic Systems , 1985, The Quantum Nature of Materials.
[57] Shoji Tanaka,et al. Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2 , 1982 .
[58] A. Larkin,et al. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas , 1980 .
[59] M. Jericho,et al. Thermal expansion of lT-TaS2 and 2H-NbSe2 , 1980 .
[60] B. Riccò,et al. A tight binding fit to the bandstructure of 2H-NbSe2 and NbS2 , 1978 .
[61] J. Schilling,et al. Effect of pressure on the Kondo temperatures of Au(Fe) and Au(Mn) , 1975 .
[62] E. Babić,et al. The thermoelectric power of AlMn alloys , 1974 .
[63] W. Holzapfel,et al. Effect of Pressure on the Kondo Temperature of Cu:Fe—Existence of a Universal Resistivity Curve , 1973 .
[64] J. Kondo. Resistance Minimum in Dilute Magnetic Alloys , 1964 .
[65] F. Jellinek,et al. Molybdenum and Niobium Sulphides , 1960, Nature.
[66] Nevill Francis Mott,et al. The Electrical Conductivity of Transition Metals , 1936 .
[67] F. Bloch. Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen , 1930 .
[68] David Abend,et al. The Kondo Problem To Heavy Fermions , 2016 .
[69] H. Goldsmid,et al. Introduction to Thermoelectricity , 2010 .
[70] Arash A. Mostofi,et al. A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .
[71] H. Katzke. Stacking disorder in 2H-NbS2 and its intercalation compounds Kx(H2O)yNbS2 I. Description and model calculations of stacking faults in the host lattice NbS2 , 2002 .
[72] W. G. Fisher,et al. Stoichiometry, structure, and physical properties of niobium disulfide , 1980 .
[73] A. Aronov,et al. Contribution to the theory of disordered metals in strongly doped semiconductors , 1979 .
[74] E. Grüneisen. Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur , 1933 .