Unidirectional Kondo scattering in layered NbS2

[1]  S. Louie,et al.  Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy , 2021, Nature Physics.

[2]  M. Watson,et al.  Fermiology and electron-phonon coupling in the 2H and 3R polytypes of NbS2 , 2021 .

[3]  F. Giustino,et al.  Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator , 2021, Science advances.

[4]  P. Liljeroth,et al.  Artificial heavy fermions in a van der Waals heterostructure , 2021, Nature.

[5]  T. Klimczuk,et al.  Polytypism and superconductivity in the NbS2 system. , 2021, Dalton transactions.

[6]  S. Louie,et al.  Imaging spinon density modulations in a 2D quantum spin liquid , 2020, 2009.07379.

[7]  C. Autieri,et al.  Charge density wave instability and pressure-induced superconductivity in bulk 1T−NbS2 , 2020, Physical Review B.

[8]  Kenji Watanabe,et al.  Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides , 2020, Nature Communications.

[9]  T. Kurosawa,et al.  Coexistence of the Kondo effect and spin glass physics in Fe-doped NbS2 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  L. Forró,et al.  Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS2 , 2019, npj 2D Materials and Applications.

[11]  J. Shan,et al.  Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.

[12]  M. Calandra,et al.  Charge density wave and spin 1/2 insulating state in single layer 1T-NbS2 , 2019, 2D Materials.

[13]  O. Yazyev,et al.  Charge density wave phase, Mottness, and ferromagnetism in monolayer 1T−NbSe2 , 2018, Physical Review B.

[14]  M. Calandra Phonon-Assisted Magnetic Mott-Insulating State in the Charge Density Wave Phase of Single-Layer 1T-NbSe_{2}. , 2018, Physical review letters.

[15]  D. Jena,et al.  Thickness dependence of superconductivity in ultrathin NbS2 , 2018, Applied Physics Express.

[16]  P. Moll Focused Ion Beam Microstructuring of Quantum Matter , 2018 .

[17]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[18]  L. Cario,et al.  Traces of charge density waves in NbS 2 , 2018, 1801.08617.

[19]  Xinsheng Wang,et al.  Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. , 2017, Nanoscale.

[20]  E. R. Margine,et al.  Origin of Superconductivity and Latent Charge Density Wave in NbS_{2}. , 2017, Physical review letters.

[21]  K. T. Law,et al.  Is 1T-TaS$_2$ a 40 year old quantum spin liquid? , 2017, 1704.06157.

[22]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[23]  R. Shull,et al.  Kondo Effect in Magnetic Tunnel Junctions with an AlOx Tunnel Barrier. , 2016, Physics letters. A.

[24]  Takashi Taniguchi,et al.  Two-dimensional metallic NbS2: growth, optical identification and transport properties , 2016 .

[25]  Timur K. Kim,et al.  Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor , 2016, Nature Communications.

[26]  R. Thomale,et al.  Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet , 2016, 1601.06018.

[27]  Zhong-Li Liu,et al.  Novel high pressure structures and superconductivity of niobium disulfide , 2014, 1401.3398.

[28]  A. Millis,et al.  Visualizing the Charge Density Wave Transition in 2H-NbSe2 in Real Space , 2013, 1307.2282.

[29]  A. Weichselbaum,et al.  Iron impurities in gold and silver: Comparison of transport measurements to numerical renormalization group calculations exploiting non-Abelian symmetries , 2013, 1305.3551.

[30]  M. Calandra,et al.  Anharmonic suppression of charge density waves in 2H-NbS2 , 2012, 1210.2327.

[31]  L. Cario,et al.  Anisotropy and temperature dependence of the first critical field in 2H–NbS2 , 2012 .

[32]  Bernhard Schaffer,et al.  Sample preparation for atomic-resolution STEM at low voltages by FIB. , 2012, Ultramicroscopy.

[33]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[34]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[35]  K. Rossnagel On the origin of charge-density waves in select layered transition-metal dichalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  L. Cario,et al.  Specific heat measurements of a superconducting NbS2 single crystal in an external magnetic field: Energy gap structure , 2010, 1010.5630.

[37]  P. Hirschfeld,et al.  Theory of resistivity upturns in metallic cuprates , 2009, 0905.1449.

[38]  A. Weichselbaum,et al.  Kondo decoherence: finding the right spin model for iron impurities in gold and silver. , 2008, Physical review letters.

[39]  L. Cario,et al.  Superconducting density of states and vortex cores of 2H-NbS2. , 2008, Physical review letters.

[40]  H. Alloul,et al.  Defects in correlated metals and superconductors , 2007, 0711.0877.

[41]  K. I. Lee,et al.  Kondo effect in magnetic tunnel junctions. , 2007, Physical review letters.

[42]  M. Johannes,et al.  Fermi-surface nesting and the origin of the charge-density wave inNbSe2 , 2005, cond-mat/0510390.

[43]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[44]  Emily S. Peters,et al.  Formation of a new (1T) trigonal NbS2 polytype via atmospheric pressure chemical vapour depositionElectronic supplementary information (ESI) available: structure refinements of the NbS2 films and crystallographic data in CIF format. See http://www.rsc.org/suppdata/jm/b3/b315782m/ , 2004 .

[45]  M. Calandra,et al.  Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.

[46]  A. K. Rastogi,et al.  Low-temperature resistance minimum in non-superconducting 3R-Nb1+xS2 and 3R-GaxNbS2 , 2001, cond-mat/0107067.

[47]  M. Kastner,et al.  From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor , 1998, cond-mat/9807233.

[48]  K. Hayashi,et al.  Structural Stability of the 1T Structure on Transition-Metal Dichalcogenides , 1997 .

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Coles,et al.  Thermoelectric power of concentrated Kondo systems. , 1993, Physical review. B, Condensed matter.

[52]  Henry,et al.  Out-of-plane conductivity of YBa2Cu3O7- delta. , 1992, Physical review. B, Condensed matter.

[53]  B. Pfalzgraf,et al.  The anisotropy of the upper critical field Hc2 and electrical resistivity in 2H-NbS2 , 1987 .

[54]  Cox,et al.  Self-consistent large-N expansion for normal-state properties of dilute magnetic alloys. , 1987, Physical review. B, Condensed matter.

[55]  R. Aoki,et al.  Effects of Organic Intercalation on Lattice Vibrations and Superconducting Properties of 2H–NbS2 , 1986 .

[56]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[57]  Shoji Tanaka,et al.  Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2 , 1982 .

[58]  A. Larkin,et al.  Magnetoresistance and Hall effect in a disordered two-dimensional electron gas , 1980 .

[59]  M. Jericho,et al.  Thermal expansion of lT-TaS2 and 2H-NbSe2 , 1980 .

[60]  B. Riccò,et al.  A tight binding fit to the bandstructure of 2H-NbSe2 and NbS2 , 1978 .

[61]  J. Schilling,et al.  Effect of pressure on the Kondo temperatures of Au(Fe) and Au(Mn) , 1975 .

[62]  E. Babić,et al.  The thermoelectric power of AlMn alloys , 1974 .

[63]  W. Holzapfel,et al.  Effect of Pressure on the Kondo Temperature of Cu:Fe—Existence of a Universal Resistivity Curve , 1973 .

[64]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[65]  F. Jellinek,et al.  Molybdenum and Niobium Sulphides , 1960, Nature.

[66]  Nevill Francis Mott,et al.  The Electrical Conductivity of Transition Metals , 1936 .

[67]  F. Bloch Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen , 1930 .

[68]  David Abend,et al.  The Kondo Problem To Heavy Fermions , 2016 .

[69]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[70]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[71]  H. Katzke Stacking disorder in 2H-NbS2 and its intercalation compounds Kx(H2O)yNbS2 I. Description and model calculations of stacking faults in the host lattice NbS2 , 2002 .

[72]  W. G. Fisher,et al.  Stoichiometry, structure, and physical properties of niobium disulfide , 1980 .

[73]  A. Aronov,et al.  Contribution to the theory of disordered metals in strongly doped semiconductors , 1979 .

[74]  E. Grüneisen Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur , 1933 .