Antimony (V) Complex Halides: Lead‐Free Perovskite‐Like Materials for Hybrid Solar Cells

Using bromoantimonate (V) (N‐EtPy)[SbBr6] as an example, it is demonstrated that ABX6 compounds can form perovskite‐like 3D crystalline frameworks with short interhalide contacts, enabling advanced optoelectronic characteristics of these materials. The designed compound shows an impressive performance in planar junction solar cells delivering external quantum efficiency of ≈80% and power conversion efficiency of ≈4%, thus being comparable with the conventional perovskite material MAPbBr3. The discovery of the first perovskite‐like compound ABX6 exhibiting good photovoltaic performance opens wide opportunities for rational design of novel perovskite‐like semiconductor materials for advanced electronic and photovoltaic applications.

[1]  Keith J Stevenson,et al.  Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. , 2017, The journal of physical chemistry letters.

[2]  Huicong Liu,et al.  Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability. , 2016, ACS applied materials & interfaces.

[3]  S. Mhaisalkar,et al.  Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics , 2016 .

[4]  Lin Sun,et al.  Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[5]  L. Quan,et al.  Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. , 2016, Angewandte Chemie.

[6]  T. Kirchartz,et al.  Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications , 2016 .

[7]  M. Ikegami,et al.  Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications. , 2016, ACS applied materials & interfaces.

[8]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[9]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[10]  Rachel C. Kurchin,et al.  Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. , 2016, Chemistry.

[11]  A. Du,et al.  Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites , 2016, Nano Research.

[12]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[13]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[14]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[15]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[16]  Stavroula Sfaelou,et al.  BiOI solar cells , 2015 .

[17]  Gerrit Boschloo,et al.  Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application , 2015, Advanced materials.

[18]  Rachel C. Kurchin,et al.  Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications. , 2015, The journal of physical chemistry letters.

[19]  G. Bazan,et al.  Electronic structure and photovoltaic application of BiI3 , 2015 .

[20]  D. Mitzi,et al.  Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor , 2015 .

[21]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[22]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[23]  Leeor Kronik,et al.  Theory of Hydrogen Migration in Organic–Inorganic Halide Perovskites , 2015, Angewandte Chemie.

[24]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[25]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[26]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[27]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[28]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[29]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[30]  Nathan T. Hahn,et al.  n-BiSI Thin Films: Selenium Doping and Solar Cell Behavior , 2012 .

[31]  A. Toriumi,et al.  Kinetic study of GeO disproportionation into a GeO2/Ge system using x-ray photoelectron spectroscopy , 2012 .

[32]  S. Hernberg,et al.  Lead poisoning in a historical perspective. , 2000, American journal of industrial medicine.

[33]  Vasilis Fthenakis,et al.  Recycling strategies to enhance the commercial viability of CIS photovoltaics , 1996 .

[34]  O. Horváth,et al.  Photoredox decomposition of tin(II), lead(II), antimony(III) and bismuth(III) iodide complexes in solution , 1996 .

[35]  H. Lilienthal,et al.  The neurobehavioural toxicology and teratology of lead. , 1995, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement.

[36]  V. Koshkin,et al.  Intercalation and photolysis of PbI2 crystals , 1986 .

[37]  T. Keiderling,et al.  Correction. The Crystal Structure of Tetraethylammonium Hexabromoantimonate(V), (C2H5)4NSbBr6 , 1971 .

[38]  S. L. Lawton,et al.  Correction. The Crystal Structure of Picolinium Nonabromoantimonate(V), (C6H7NH)2-SbVBr9 , 1971 .

[39]  T. Keiderling,et al.  The Crystal Structure of Tetraethylammonium Hexabromoantimonate(V), (C2H5)4NSbBr6 , 1971 .

[40]  S. L. Lawton,et al.  Crystal structure of quinuclidinium dodecarbromoantimon(III)antimonate(V)-2-dibromine, (C7H13NH)4Sb(III)Sb(V)Br12.2Br2 , 1971 .

[41]  S. L. Lawton,et al.  Crystal structure of di-.alpha.-picolinium nonabromoantimonate(V) , 1968 .

[42]  S. L. Lawton,et al.  Crystal Structure Studies of Some Unusual Antimony Bromide Salts1 , 1966 .

[43]  S. L. Lawton,et al.  The Crystal Structure of Ammonium Hexabromoantimonate, (NH4)4SbIIISbVBr12 , 1966 .

[44]  J. E. Whitney,et al.  SPECTROPHOTOMETRIC INVESTIGATION OF THE INTERACTION BETWEEN IONS OF DIFFERENT OXIDATION STATES OF AN ELEMENT , 1947 .

[45]  K. A. Jensen Die Kristallstruktur der Verbindungen (NH4)2SbBr6, Rb2SbBr6 und Rb2SbCl6 , 1937 .

[46]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[47]  W. Yule,et al.  Lead toxicity : history and environmental impact , 1986 .

[48]  R. F. Weinlani,et al.  Ueber Halogendoppelsalze vom fünfwerthigen Antimon und eine ihnen zu Grunde liegende Säure , 1903 .