The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory

[1]  Nilanjana Datta,et al.  General Theory of Environment-Assisted Entanglement Distillation , 2010, IEEE Transactions on Information Theory.

[2]  Debbie Leung,et al.  Coherent state exchange in multi-prover quantum interactive proof systems , 2008, Chic. J. Theor. Comput. Sci..

[3]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[4]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[5]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[6]  N. Datta,et al.  Entanglement cost in practical scenarios. , 2009, Physical review letters.

[7]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[8]  R. Renner,et al.  The Decoupling Theorem , 2011 .

[9]  Francesco BuscemiNilanjana Datta General theory of assisted entanglement distillation , 2010 .

[10]  Nilanjana Datta,et al.  Distilling entanglement from arbitrary resources , 2010, 1006.1896.

[11]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[12]  Adam D. Smith,et al.  Leftover Hashing Against Quantum Side Information , 2010, IEEE Transactions on Information Theory.

[13]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[14]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[15]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[16]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[17]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[18]  A. Harrow Entanglement spread and clean resource inequalities , 2009, 0909.1557.

[19]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[20]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[21]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[22]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[23]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[24]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[26]  Jonathan Oppenheim State redistribution as merging: introducing the coherent relay , 2008 .

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[29]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[30]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[31]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[32]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[33]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[34]  I. Devetak The private classical capacity and quantum capacity of a quantum channel , 2003, IEEE Transactions on Information Theory.

[35]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[36]  P. Hayden,et al.  Universal entanglement transformations without communication , 2003 .

[37]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[38]  A. Winter Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.

[39]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[40]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[41]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[42]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[43]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[44]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[45]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[46]  R. Connelly In Handbook of Convex Geometry , 1993 .

[47]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[49]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[50]  W. Stinespring Positive functions on *-algebras , 1955 .