The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory
暂无分享,去创建一个
[1] Nilanjana Datta,et al. General Theory of Environment-Assisted Entanglement Distillation , 2010, IEEE Transactions on Information Theory.
[2] Debbie Leung,et al. Coherent state exchange in multi-prover quantum interactive proof systems , 2008, Chic. J. Theor. Comput. Sci..
[3] Joseph M. Renes,et al. One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.
[4] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[5] Joseph M. Renes,et al. Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.
[6] N. Datta,et al. Entanglement cost in practical scenarios. , 2009, Physical review letters.
[7] Nilanjana Datta,et al. One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.
[8] R. Renner,et al. The Decoupling Theorem , 2011 .
[9] Francesco BuscemiNilanjana Datta. General theory of assisted entanglement distillation , 2010 .
[10] Nilanjana Datta,et al. Distilling entanglement from arbitrary resources , 2010, 1006.1896.
[11] F. Dupuis. The decoupling approach to quantum information theory , 2010, 1004.1641.
[12] Adam D. Smith,et al. Leftover Hashing Against Quantum Side Information , 2010, IEEE Transactions on Information Theory.
[13] R. Renner,et al. The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.
[14] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[15] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.
[16] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[17] M. Berta. Single-shot Quantum State Merging , 2009, 0912.4495.
[18] A. Harrow. Entanglement spread and clean resource inequalities , 2009, 0909.1557.
[19] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[20] Nilanjana Datta,et al. Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.
[21] Matthias Christandl,et al. Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.
[22] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[23] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[24] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] Nilanjana Datta,et al. Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.
[26] Jonathan Oppenheim. State redistribution as merging: introducing the coherent relay , 2008 .
[27] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[28] K. Audenaert. A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.
[29] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[30] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[31] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[32] Andreas Winter,et al. Partial quantum information , 2005, Nature.
[33] Robert König,et al. Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.
[34] I. Devetak. The private classical capacity and quantum capacity of a quantum channel , 2003, IEEE Transactions on Information Theory.
[35] Renato Renner,et al. Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[36] P. Hayden,et al. Universal entanglement transformations without communication , 2003 .
[37] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[38] A. Winter. Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.
[39] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[40] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[41] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[42] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[43] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[44] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[45] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[46] R. Connelly. In Handbook of Convex Geometry , 1993 .
[47] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[48] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[49] Jack K. Wolf,et al. Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.
[50] W. Stinespring. Positive functions on *-algebras , 1955 .