A Global Adjustment Method for Photogrammetric Processing of Chang’E-2 Stereo Images

The Chang’E-2 (CE2) lunar orbiter was the second robotic orbiter of the Chinese Lunar Exploration Program, as well as the pioneer robotic orbiter in the soft landing project in the second phase of the program. It used a two-line stereo camera to acquire stereo images with global coverage at a resolution of 7 m. The stereo images have a large potential for producing the best lunar topographic map. However, errors and uncertainties in the interior orientation (IO) and exterior orientation (EO) parameters of the camera seriously affected the accuracy of the global topographic mapping. In this paper, a global adjustment method is proposed to eliminate the effects of these errors. The error models are represented by a Chebyshev polynomial. The polynomial coefficients were estimated as unknowns using five lunar laser ranging retroreflector (LRRR) points as ground control points in the adjustment. The experimental results show that the planimetric and height deviations between the neighboring strips were 5 and 2 m (less than 1 pixel), respectively, which were decreased by 32.6 and 31.5 times, respectively, relative to those derived from the original EO parameters. The large inconsistencies in the CE2 trajectory data were significantly reduced after the adjustment. In comparison with the LRRR positions, the planimetric and height errors ranged from 21 to 97 m and −19 to 10 m, respectively. A new seamless mosaic and high precision absolute position topographic map has been generated using this method.

[1]  David E. Smith,et al.  Topography of the Moon from the Clementine lidar , 1997 .

[2]  C. D. Hoyle,et al.  Laser ranging to the lost Lunokhod 1 reflector , 2010, 1009.5720.

[3]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[4]  Hui Gong,et al.  Bundle Block Adjustment of Satellite Linear Array Imagery Based on Quaternion , 2011, 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping.

[5]  Mark S. Robinson,et al.  REVISED COORDINATES FOR APOLLO HARDWARE , 2012 .

[6]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[7]  Hans-Gerd Maas,et al.  Development of a geometric model for an all-reflective camera system , 2013 .

[8]  Brent A. Archinal,et al.  Unified Lunar Control Network 2005 and Topographic Model , 2005 .

[9]  X. X. Newhall,et al.  Lunar Moments, Tides, Orientation, and Coordinate Frames , 1996 .

[10]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[11]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[12]  Wei Zuo,et al.  Lunar Global High-precision Terrain Reconstruction Based on Chang'e-2 Stereo Images , 2018 .

[13]  Yunsong Li,et al.  A GPU-Accelerated Wavelet Decompression System With SPIHT and Reed-Solomon Decoding for Satellite Images , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[15]  Bin Liu,et al.  A Self-Calibration Bundle Adjustment Method for Photogrammetric Processing of Chang $^{\prime}$E-2 Stereo Lunar Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Wei Zhao,et al.  Auto-compensation of velocity-height ratio for Chang’E-2 satellite CCD stereo camera , 2011 .

[17]  J. Muller,et al.  HRSC on Mars Express - Photogrammetric and Cartographic Research , 2005 .

[18]  Wei Zuo,et al.  The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography , 2010 .

[19]  Li Zhang Automatic Digital Surface Model (DSM) generation from linear array images , 2005 .

[20]  Akira Iwasaki,et al.  Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations , 2012 .

[21]  Kenneth Seidelmann Working Group on Cartographic Coordinates and Rotational Elements , 2007 .

[22]  Slava G. Turyshev,et al.  Lunar Laser Ranging Science: Gravitational Physics and Lunar Interior and Geodesy , 2006 .

[23]  Li Chunlai Lunar Image Data Preprocessing and Quality Evaluation of CCD Stereo Camera on Chang'E-2 , 2013 .

[24]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[25]  G. Jiang,et al.  EXTERIOR ORIENTATION OF LINE-ARRAY CCD IMAGES BASED ON QUATERNION SPHERICAL LINEAR INTERPOLATION , 2010 .

[26]  A. S. Kiran Kumar,et al.  DEM Generation for Lunar Surface using Chandrayaan-1 TMC Triplet Data , 2012, Journal of the Indian Society of Remote Sensing.

[27]  Thomas Roatsch,et al.  GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data , 2012 .

[28]  K. L. Edmundson,et al.  Generating digital terrain models using lroc nac images , 2010 .

[29]  Kaichang Di,et al.  Rigorous Photogrammetric Processing of HiRISE Stereo Imagery for Mars Topographic Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Bo Wu,et al.  Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling , 2014 .

[31]  J. Oberst,et al.  Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry , 2009, Science.

[32]  Li Long Liu,et al.  Analyzing the Precision of Chebyshev Polynomial Fitting GPS Satellite Ephemeris , 2013 .

[33]  Tao Xu,et al.  Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points , 2017, Remote. Sens..

[34]  Tim R. Colvin,et al.  Lunar coordinates in the regions of the Apollo landers , 2000 .

[35]  F. Scholten,et al.  Mars Express HRSC Data Processing - Methods and Operational Aspects , 2005 .

[36]  Huang Hao,et al.  Analysis of the Technical Characteristic on Chang’e-2 Lunar Orbiter , 2010 .

[37]  Albert J. P. Theuwissen,et al.  Technical challenges and recent progress in CCD imagers , 2006 .

[38]  Jian Guo,et al.  Integration of Chang'E-1 Imagery and Laser Altimeter Data for Precision Lunar Topographic Modeling , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Cao Jianfeng,et al.  Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models , 2012 .

[40]  Wei Zuo,et al.  Laser altimetry data of Chang’E-1 and the global lunar DEM model , 2010 .

[41]  Yong Huang,et al.  Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models , 2012 .

[42]  Satoru Yamamoto,et al.  Data Products of SELENE (Kaguya) Terrain Camera for Future Lunar Missions , 2014 .

[43]  Mehdi Mokhtarzade,et al.  Self-calibration of digital aerial camera using combined orthogonal models , 2016 .

[44]  Randolph L. Kirk,et al.  The Unified Lunar Control Network 2005 , 2006 .

[45]  Shuanggen Jin,et al.  New results and questions of lunar exploration from SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS , 2013 .