Quantum circuits for solving local fermion-to-qubit mappings

Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the locality of the operators comes at the expense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the lower-dimensional physical Hilbert space that represents fermionic degrees of freedom, one must satisfy a set of constraints. In this work, we introduce quantum circuits that exactly satisfy these stringent constraints. We demonstrate how maintaining locality allows one to carry out a Trotterized time-evolution with constant circuit depth per time step. Our construction is particularly advantageous to simulate the time evolution operator of fermionic systems in d>1 dimensions. We also discuss how these families of circuits can be used as variational quantum states, focusing on two approaches: a first one based on general constant-fermion-number gates, and a second one based on the Hamiltonian variational ansatz where the eigenstates are represented by parametrized time-evolution operators. We apply our methods to the problem of finding the ground state and time-evolved states of the $t$-$V$ model.

[1]  Yu-An Chen,et al.  Equivalence between Fermion-to-Qubit Mappings in two Spatial Dimensions , 2022, PRX Quantum.

[2]  D. Pfau,et al.  Ab initio quantum chemistry with neural-network wavefunctions , 2022, Nature Reviews Chemistry.

[3]  G. Carleo,et al.  Variational solutions to fermion-to-qubit mappings in two spatial dimensions , 2022, Quantum.

[4]  G. Carleo,et al.  NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems , 2021, SciPost Physics Codebases.

[5]  A. Montanaro,et al.  Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer , 2021, Nature Communications.

[6]  R. Silver,et al.  Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots , 2021, Nature Communications.

[7]  Kang Li,et al.  Higher-dimensional Jordan-Wigner transformation and auxiliary Majorana fermions , 2021, Physical Review B.

[8]  O. Kyriienko,et al.  Quantum simulation and ground state preparation for the honeycomb Kitaev model , 2021, 2109.13883.

[9]  H. Po Symmetric Jordan-Wigner transformation in higher dimensions , 2021, 2107.10842.

[10]  I. Tavernelli,et al.  Gauge-invariant quantum circuits for U (1) and Yang-Mills lattice gauge theories , 2021, Physical Review Research.

[11]  Benjamin J. Brown,et al.  The XZZX surface code , 2020, Nature Communications.

[12]  S. Brierley,et al.  Efficient quantum measurement of Pauli operators in the presence of finite sampling error , 2020, Quantum.

[13]  T. Cubitt,et al.  Compact fermion to qubit mappings , 2020, Physical Review B.

[14]  Johannes Bausch,et al.  Hamiltonian simulation algorithms for near-term quantum hardware , 2020, Nature Communications.

[15]  A. Bochniak,et al.  Bosonization based on Clifford algebras and its gauge theoretic interpretation , 2020, Journal of High Energy Physics.

[16]  H. Neven,et al.  Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning , 2019, Quantum.

[17]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[18]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[19]  Jesse R. Stryker,et al.  Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory , 2018, Physical Review D.

[20]  Chris Cade,et al.  Strategies for solving the Fermi-Hubbard model on near-term quantum computers , 2019, 1912.06007.

[21]  Zhenyu Cai,et al.  Resource Estimation for Quantum Variational Simulations of the Hubbard Model , 2019, 1910.02719.

[22]  Margaret Martonosi,et al.  Minimizing State Preparations in Variational Quantum Eigensolver by Partitioning into Commuting Families , 2019, 1907.13623.

[23]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[24]  Román Orús,et al.  Tensor networks for complex quantum systems , 2018, Nature Reviews Physics.

[25]  James D. Whitfield,et al.  Superfast encodings for fermionic quantum simulation , 2018, Physical Review Research.

[26]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[27]  Peter Schauß,et al.  Bad metallic transport in a cold atom Fermi-Hubbard system , 2018, Science.

[28]  I. G. Ryabinkin,et al.  Revising measurement process in the variational quantum eigensolver: Is it possible to reduce the number of separately measured operators? , 2018, 1810.11602.

[29]  Stephanie Wehner,et al.  Fermion-to-qubit mappings with varying resource requirements for quantum simulation , 2017, New Journal of Physics.

[30]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[31]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[32]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[33]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[34]  Yu-An Chen,et al.  Exact bosonization in two spatial dimensions and a new class of lattice gauge theories , 2017, Annals of Physics.

[35]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[36]  L. M. K. Vandersypen,et al.  Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.

[37]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[38]  J. Whitfield,et al.  Local spin operators for fermion simulations , 2016, 1605.09789.

[39]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[40]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[41]  J. Rasmussen,et al.  Gauss’s Law , 2013 .

[42]  Bela Bauer,et al.  Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states , 2009, 0912.0646.

[43]  Neil Genzlinger A. and Q , 2006 .

[44]  F. Verstraete,et al.  Mapping local Hamiltonians of fermions to local Hamiltonians of spins , 2005, cond-mat/0508353.

[45]  R. Ball,et al.  Fermions without fermion fields. , 2004, Physical review letters.

[46]  X. Wen Quantum orders in an exact soluble model. , 2002, Physical review letters.

[47]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[48]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .