Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems

This note addresses problems of detectability and output feedback stabilizability of nonlinear systems with globally Lipschitz nonlinearities via limited capacity digital communication channels. The main results are given in terms of Riccati algebraic inequalities. A simulation result on the control of a flexible joint robotic system is also presented

[1]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[2]  Ian R. Petersen,et al.  Robust Control Design Using H-infinity Methods , 2000 .

[3]  Ian R. Petersen,et al.  Nonlinear versus linear control in the absolute stabilizability of uncertain systems with structured uncertainty , 1995, IEEE Trans. Autom. Control..

[4]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[5]  C. De Persis Results on stabilization of nonlinear systems under finite data-rate constraints , 2004 .

[6]  Andrey V. Savkin,et al.  The problem of LQG optimal control via a limited capacity communication channel , 2004, Syst. Control. Lett..

[7]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[8]  Andrey V. Savkin,et al.  Multirate Stabilization of Linear Multiple Sensor Systems via Limited Capacity Communication Channels , 2005, SIAM J. Control. Optim..

[9]  I. Petersen,et al.  Recursive state estimation for uncertain systems with an integral quadratic constraint , 1995, IEEE Trans. Autom. Control..

[10]  I. Petersen,et al.  Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[11]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[12]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[13]  R. Evans,et al.  Mean square stabilisability of stochastic linear systems with data rate constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  Xinkai Chen,et al.  Hybrid stabilization of discrete-time LTI systems with two quantized signals , 2005 .

[15]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[16]  Andrey V. Savkin,et al.  Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[17]  Ian R. Petersen,et al.  Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .

[18]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[19]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[20]  A.V. Savkin,et al.  State feedback stabilization of uncertain discrete-time linear systems via a limited capacity communication channel , 2002, Final Program and Abstracts on Information, Decision and Control.

[21]  Daniel J. Stilwell,et al.  Platoons of underwater vehicles , 2000 .

[22]  A.S. Matveev,et al.  An analogue of Shannon information theory for networked control systems: State estimation via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[23]  W. Moran,et al.  Topological feedback entropy for nonlinear systems , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[24]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[25]  Ian R. Petersen,et al.  Set-valued state estimation via a limited capacity communication channel , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[26]  R. Rajamani,et al.  Existence and design of observers for nonlinear systems: Relation to distance to unobservability , 1998 .

[27]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[28]  Ian R. Petersen,et al.  A connection between H ∞ control and the absolute stabilizability of uncertain systems , 1994 .