InP based lasers and optical amplifiers with wire-/dot-like active regions

Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire-/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 and 1.65 µm. In a brief overview different technological approaches will be discussed, while in the main part the current status and recent results of quantum-dash lasers are reported. This includes topics like dash formation and material growth, device performance of lasers and optical amplifiers, static and dynamic properties and fundamental material and device modelling. (Some figures in this article are in colour only in the electronic version)

[1]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[2]  Johann Peter Reithmaier,et al.  Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers , 1999 .

[3]  Z. G. Wang,et al.  Two-dimensional ordering of self-assembled InAs quantum dots grown on (311)B InP substrate , 2000 .

[4]  G. Eisenstein,et al.  The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers , 2005, IEEE Journal of Quantum Electronics.

[5]  T. W. Berg,et al.  Saturation and noise properties of quantum-dot optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[6]  Donghan Lee,et al.  Epitaxial growth and optical characterization of InAs/InGaAsP/InP self-assembled quantum dots , 2001 .

[7]  J. Fraser,et al.  InAs self-assembled quantum-dot lasers grown on (100) InP , 2002 .

[8]  Johann Peter Reithmaier,et al.  Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers , 2002 .

[9]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[10]  Rui Q. Yang,et al.  Lasing characteristics of InAs quantum-dot lasers on (001) InP substrate , 2003 .

[11]  S. Rennon,et al.  Laterally coupled DBR laser emitting at 1.55 μm fabricated by focused ion beam lithography , 2002, IEEE Photonics Technology Letters.

[12]  A. Forchel,et al.  The role of Auger recombination in InAs 1.3-/spl mu/m quantum-dot lasers investigated using high hydrostatic pressure , 2003 .

[13]  A. Forchel,et al.  Epitaxial growth of 1.55 /spl mu/m emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications , 2002, International Conference on Molecular Bean Epitaxy.

[14]  Atomic force microscopy study of strained InGaAs quantum disks self‐organizing on GaAs (n11)B substrates , 1994 .

[15]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[16]  J. Brault,et al.  Optical properties of self-assembled InAs quantum islands grown on InP(001) vicinal substrates , 2001 .

[17]  Michel Calligaro,et al.  High-power and low-noise 1.55 μm InP-based quantum dash lasers , 2004, SPIE Photonics Europe.

[18]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[19]  J. Lefebvre,et al.  Tunable emission from InAs quantum dots on InP nanotemplates , 2002 .

[20]  D. Deppe,et al.  Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity , 2000, IEEE Photonics Technology Letters.

[21]  G. Eisenstein,et al.  On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics , 2004, IEEE Journal of Quantum Electronics.

[22]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[23]  Y. Nakata,et al.  Pattern‐effect‐free amplification and cross‐gain modulation achieved by using ultrafast gain nonlinearity in quantum‐dot semiconductor optical amplifiers , 2003 .

[24]  Andreas Stintz,et al.  Carrier migration in structures with InAs quantum dots , 2003 .

[25]  G. Moreau,et al.  Growth and optical characterizations of InAs quantum dots on InP substrate: towards a 1.55 μm quantum dot laser , 2003 .

[26]  J. Lefebvre,et al.  Chemical beam epitaxy growth of self-assembled InAs/InP quantum dots , 2001 .

[27]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[28]  G. Eisenstein,et al.  Self-consistent rate equations of self-assembly quantum wire lasers , 2004, IEEE Journal of Quantum Electronics.

[29]  A. Forchel,et al.  Long-wavelength InP-based quantum-dash lasers , 2002, IEEE Photonics Technology Letters.

[30]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[31]  Hanan Dery,et al.  On the nature of quantum dash structures , 2004 .

[32]  N. Ledentsov,et al.  Investigation of the device characteristics of a low-threshold quantum-dot laser emitting at 1.9 µm , 1998 .

[33]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[34]  Sung Ui Hong,et al.  Room-temperature operation of InP-based InAs quantum dot laser , 2004 .

[35]  S. Loualiche,et al.  Wavelength tuning of InAs quantum dots grown on (311)B InP , 1999 .

[36]  Yueming Qiu,et al.  Effect of thin GaAs interface layer on InAs quantum dots grown on InGaAs/InP using metalorganic vapor phase epitaxy , 2003 .

[37]  Richard V. Penty,et al.  Uncooled 40Gb/s 4-level directly modulated laser source for datacoms applications , 2004, SPIE Photonics Europe.

[38]  Andreas Stintz,et al.  Formation of quantum wires and quantum dots on buffer layers grown on InP substrates , 2003 .

[39]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[40]  M. Gioannini,et al.  Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[41]  K. Nishi,et al.  Low-threshold lasing from high-density InAs quantum dots of uniform size , 1999 .

[42]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[43]  Michel Calligaro,et al.  Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier , 2004 .

[44]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[45]  G. Eisenstein,et al.  Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm , 2003, IEEE Photonics Technology Letters.

[46]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[47]  A. Stintz,et al.  Room-temperature operation of InAs quantum-dash lasers on InP [001] , 2001, IEEE Photonics Technology Letters.

[48]  Michel Gendry,et al.  Surface effects on shape, self-organization and photoluminescence of InAs islands grown on InAlAs/InP(001) , 2002 .

[49]  D. Bimberg,et al.  LOW THRESHOLD QUANTUM DOT INJECTION LASER EMITTING AT 1.9MU M , 1998 .

[50]  A. Forchel,et al.  Spectrally resolved dynamics of inhomogeneously broadened gain in InAs/InP 1550 nm quantum-dash lasers , 2004 .

[51]  Andreas Stintz,et al.  InP based quantum dash lasers with 2 /spl mu/m wavelength , 2003 .

[52]  S. Salaun,et al.  Relationship between self‐organization and size of InAs islands on InP(001) grown by gas‐source molecular beam epitaxy , 1995 .

[53]  T. Anan,et al.  Long-wavelength lasing from InAs self-assembled quantum dots on (311) B InP , 1998 .

[54]  Johann Peter Reithmaier,et al.  High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer , 1999 .

[55]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[56]  Xiangkun Zhang,et al.  Tunneling injection lasers: a new class of lasers with reduced hot carrier effects , 1996 .

[57]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[58]  Sylvain Raymond,et al.  InAs self‐assembled quantum dots on InP by molecular beam epitaxy , 1996 .

[59]  H. Ishikawa,et al.  1.3-/spl mu/m CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots , 2000, IEEE Journal of Quantum Electronics.

[60]  Johann Peter Reithmaier,et al.  Recombination mechanisms in InAs/InP quantum dash lasers studied using high hydrostatic pressure , 2004 .

[61]  Mariangela Gioannini Investigation of p-type doping effect on the gain characteristics of quantum dash semiconductor lasers , 2004, SPIE Photonics Europe.

[62]  G. Moreau,et al.  Growth and optical characterizations of InAs quantum dots on InP substrate: towards a 1.55 /spl mu/m quantum dot laser , 2002, International Conference on Molecular Bean Epitaxy.

[63]  A. Forchel,et al.  InP-based quantum dash lasers for broadband optical amplification and gas sensing applications , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[64]  A. Forchel,et al.  Highly Resolved Maskless Patterning on InP by Focused Ion Beam Enhanced Wet Chemical Etching , 1999 .

[65]  O. Dehaese,et al.  Optical properties and carrier dynamics of InAs/InP(1 1 3)B quantum dots emitting between 1.3 and 1.55 μm for laser applications , 2003 .

[66]  Tomas Bryllert,et al.  InAs quantum dots grown on InAlGaAs lattice matched to InP , 2003 .

[67]  Dan Birkedal,et al.  Measurements of gain and index dynamics in quantum dash semiconductor optical amplifiers , 2004 .

[68]  S. Sugou,et al.  Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates , 2001 .

[69]  Theda Daniels-Race,et al.  Effects of the matrix on self-organization of InAs quantum nanostructures grown on InP substrates , 2002 .