Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+

Abstract We study unification problem and problem of admissibility for inference rules in minimal Johanssonsʼ logic J and positive intuitionistic logic IPC + . This paper proves that the problem of admissibility for inference rules with coefficients (parameters) (as well as plain ones – without parameters) is decidable for the paraconsistent minimal Johanssonsʼ logic J and the positive intuitionistic logic IPC + . Using obtained technique we show also that the unification problem for these logics is also decidable: we offer algorithms which compute complete sets of unifiers for any unifiable formula. Checking just unifiability of formulas with coefficients also works via verification of admissibility.

[1]  Vladimir V. Rybakov,et al.  Multi-modal and Temporal Logics with Universal Formula - Reduction of Admissibility to Validity and Unification , 2008, J. Log. Comput..

[2]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[3]  Vladimir V. Rybakov,et al.  Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..

[4]  K. Segerberg Propositional Logics Related to Heyting's and Johansson's , 2008 .

[5]  Jan Łukasiewicz,et al.  On the principle of the excluded middle , 1987 .

[6]  Vladimir V. Rybakov,et al.  Linear temporal logic with until and next, logical consecutions , 2008, Ann. Pure Appl. Log..

[7]  Wolfgang Rautenberg,et al.  Klassische und nichtklassische Aussagenlogik , 1979 .

[8]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[9]  Franz Baader,et al.  Unification in the Description Logic EL , 2009, RTA.

[10]  Rosalie Iemhoff Towards a Proof System for Admissibility , 2003, CSL.

[11]  Vladimir V. Rybakov,et al.  A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .

[12]  Vladimir V. Rybakov,et al.  Rules of inference with parameters for intuitionistic logic , 1992, Journal of Symbolic Logic.

[13]  Harvey M. Friedman,et al.  One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.

[14]  Vladimir V. Rybakov,et al.  Unification in linear temporal logic LTL , 2011, Ann. Pure Appl. Log..

[15]  Vladimir V. Rybakov,et al.  Logics with the universal modality and admissible consecutions , 2007, J. Appl. Non Class. Logics.

[16]  Vladimir V. Rybakov,et al.  Problems of Substitution and Admissibility in the Modal System Grz and in Intuitionistic Propositional Calculus , 1990, Ann. Pure Appl. Log..

[17]  L. L. Maksimova,et al.  Decidability of the weak interpolation property over the minimal logic , 2011 .

[18]  Vladimir V. Rybakov Construction of an Explicit Basis for Rules Admissible in Modal System S4 , 2001, Math. Log. Q..

[19]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[20]  Silvio Ghilardi,et al.  Unification Through Projectivity , 1997, J. Log. Comput..

[21]  S. Odintsov Constructive Negations and Paraconsistency , 2008 .

[22]  Franz Baader,et al.  Unification in modal and description logics , 2011, Log. J. IGPL.

[23]  Emil Jerábek,et al.  Independent Bases of Admissible Rules , 2008, Log. J. IGPL.

[24]  J. D. Silva On the Principle of Excluded Middle , 2012 .

[25]  Vladimir V. Rybakov,et al.  Rules admissible in transitive temporal logic TS4, sufficient condition , 2010, Theor. Comput. Sci..

[26]  Emil Jerábek,et al.  Complexity of admissible rules , 2007, Arch. Math. Log..

[27]  Emil Jerábek Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[28]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[29]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[30]  W. V. Quine,et al.  Der Minimalkalkul, ein Reduzierter Intutionistischer Formalismus. , 1937 .

[31]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[32]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[33]  Ralf Küsters,et al.  Unification in a Description Logic with Transitive Closure of Roles , 2001, LPAR.

[34]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[35]  L. L. Maksimova,et al.  Decidability of the interpolation problem and of related properties in tabular logics , 2009 .

[36]  L. L. Maksimova,et al.  A method of proving interpolation in paraconsistent extensions of the minimal logic , 2007 .

[37]  Stefano Berardi,et al.  Interactive Learning-Based Realizability for Heyting Arithmetic with EM1 , 2010, Log. Methods Comput. Sci..