Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+
暂无分享,去创建一个
[1] Vladimir V. Rybakov,et al. Multi-modal and Temporal Logics with Universal Formula - Reduction of Admissibility to Validity and Unification , 2008, J. Log. Comput..
[2] Silvio Ghilardi,et al. Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.
[3] Vladimir V. Rybakov,et al. Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..
[4] K. Segerberg. Propositional Logics Related to Heyting's and Johansson's , 2008 .
[5] Jan Łukasiewicz,et al. On the principle of the excluded middle , 1987 .
[6] Vladimir V. Rybakov,et al. Linear temporal logic with until and next, logical consecutions , 2008, Ann. Pure Appl. Log..
[7] Wolfgang Rautenberg,et al. Klassische und nichtklassische Aussagenlogik , 1979 .
[8] Emil Jerábek,et al. Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..
[9] Franz Baader,et al. Unification in the Description Logic EL , 2009, RTA.
[10] Rosalie Iemhoff. Towards a Proof System for Admissibility , 2003, CSL.
[11] Vladimir V. Rybakov,et al. A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .
[12] Vladimir V. Rybakov,et al. Rules of inference with parameters for intuitionistic logic , 1992, Journal of Symbolic Logic.
[13] Harvey M. Friedman,et al. One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.
[14] Vladimir V. Rybakov,et al. Unification in linear temporal logic LTL , 2011, Ann. Pure Appl. Log..
[15] Vladimir V. Rybakov,et al. Logics with the universal modality and admissible consecutions , 2007, J. Appl. Non Class. Logics.
[16] Vladimir V. Rybakov,et al. Problems of Substitution and Admissibility in the Modal System Grz and in Intuitionistic Propositional Calculus , 1990, Ann. Pure Appl. Log..
[17] L. L. Maksimova,et al. Decidability of the weak interpolation property over the minimal logic , 2011 .
[18] Vladimir V. Rybakov. Construction of an Explicit Basis for Rules Admissible in Modal System S4 , 2001, Math. Log. Q..
[19] Silvio Ghilardi,et al. Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..
[20] Silvio Ghilardi,et al. Unification Through Projectivity , 1997, J. Log. Comput..
[21] S. Odintsov. Constructive Negations and Paraconsistency , 2008 .
[22] Franz Baader,et al. Unification in modal and description logics , 2011, Log. J. IGPL.
[23] Emil Jerábek,et al. Independent Bases of Admissible Rules , 2008, Log. J. IGPL.
[24] J. D. Silva. On the Principle of Excluded Middle , 2012 .
[25] Vladimir V. Rybakov,et al. Rules admissible in transitive temporal logic TS4, sufficient condition , 2010, Theor. Comput. Sci..
[26] Emil Jerábek,et al. Complexity of admissible rules , 2007, Arch. Math. Log..
[27] Emil Jerábek. Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..
[28] Franz Baader,et al. Unification theory , 1986, Decis. Support Syst..
[29] Rosalie Iemho. On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .
[30] W. V. Quine,et al. Der Minimalkalkul, ein Reduzierter Intutionistischer Formalismus. , 1937 .
[31] Emil Jerábek,et al. Admissible Rules of Modal Logics , 2005, J. Log. Comput..
[32] Paliath Narendran,et al. Unification of Concept Terms in Description Logics , 2001, Description Logics.
[33] Ralf Küsters,et al. Unification in a Description Logic with Transitive Closure of Roles , 2001, LPAR.
[34] Rosalie Iemhoff,et al. Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..
[35] L. L. Maksimova,et al. Decidability of the interpolation problem and of related properties in tabular logics , 2009 .
[36] L. L. Maksimova,et al. A method of proving interpolation in paraconsistent extensions of the minimal logic , 2007 .
[37] Stefano Berardi,et al. Interactive Learning-Based Realizability for Heyting Arithmetic with EM1 , 2010, Log. Methods Comput. Sci..