Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo

[1]  D. Bohl,et al.  betaMinor-globin messenger RNA accumulation in reticulocytes governs improved erythropoiesis in beta thalassemic mice after erythropoietin complementary DNA electrotransfer in muscles. , 2001, Blood.

[2]  F. Pflumio,et al.  In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34(+) cord blood cells. , 2000, Experimental hematology.

[3]  M. Ratajczak,et al.  The Role of HIV‐Related Chemokine Receptors and Chemokines in Human Erythropoiesis in Vitro , 2000, Stem cells.

[4]  S Neelamegham,et al.  Sequential binding of CD11a/CD18 and CD11b/CD18 defines neutrophil capture and stable adhesion to intercellular adhesion molecule-1. , 2000, Blood.

[5]  P. Gane,et al.  Time‐course expression of polypeptides carrying blood group antigens during human erythroid differentiation , 1999, British journal of haematology.

[6]  D. An,et al.  Purification, amplification and characterization of a population of human erythroid progenitors , 1999, British journal of haematology.

[7]  H. Beug,et al.  The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. , 1999, Blood.

[8]  M. Tanner,et al.  The expression of human blood group antigens during erythropoiesis in a cell culture system. , 1999, Blood.

[9]  M. Zenke,et al.  Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. , 1998, Blood.

[10]  N. Gorin,et al.  Cell culture bags allow a large extent of ex vivo expansion of LTC-IC and functional mature cells which can subsequently be frozen: interest for large-scale clinical applications , 1998, Bone Marrow Transplantation.

[11]  H. Meiselman,et al.  An in vitro model of human red blood cell production from hematopoietic progenitor cells. , 1998, Blood.

[12]  I. Papassotiriou,et al.  Gamma chain heterogeneity: determination of Hb F composition by perfusion chromatography. , 1998, Hemoglobin.

[13]  Lesley J. Murray,et al.  Thrombopoietin stimulates megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single CD34+Thy-1+Lin− primitive progenitor cells , 1996 .

[14]  W S Alexander,et al.  Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. , 1996, Blood.

[15]  F. Bischoff,et al.  Rare event selection of fetal nucleated erythrocytes in maternal blood by flow cytometry. , 1996, Cytometry.

[16]  Lesley J. Murray,et al.  Thrombopoietin stimulates megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single CD34+Thy-1+Lin- primitive progenitor cells. , 1996, Blood.

[17]  K. Muta,et al.  Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. , 1995, Blood.

[18]  C. Peschle,et al.  In vitro human immunodeficiency virus-1 infection of purified hematopoietic progenitors in single-cell culture. , 1995, Blood.

[19]  J. Dick,et al.  Engraftment of immune-deficient mice with primitive hematopoietic cells from beta-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. , 1995, Human molecular genetics.

[20]  J. Cartron,et al.  PCR‐based determination of Rhc and RhE status of fetuses at risk of Rhc and RhE haemolytic disease , 1994, British journal of haematology.

[21]  A. Wickrema,et al.  Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. , 1994, The Journal of clinical investigation.

[22]  A. B. Lyons,et al.  Determination of lymphocyte division by flow cytometry. , 1994, Journal of immunological methods.

[23]  P. Pic,et al.  Séparation des hémoglobines F, Fac, S, C, A1c et dosage de l'hémoglobine F par chromatographie liquide haute performance , 1994 .

[24]  D. Metcalf Hematopoietic regulators: redundancy or subtlety? , 1993, Blood.

[25]  M. Koury,et al.  The molecular mechanism of erythropoietin action. , 1992, European journal of biochemistry.

[26]  S. Hobbs,et al.  Roles of erythropoietin, insulin-like growth factor 1, and unidentified serum factors in promoting maturation of purified murine erythroid colony-forming units. , 1992, Blood.

[27]  T. Nakahata,et al.  Changes in cell surface antigen expressions during proliferation and differentiation of human erythroid progenitors. , 1992, Blood.

[28]  S. Koury,et al.  Purification of human blood burst‐forming units‐erythroid and demonstration of the evolution of erythropoietin receptors , 1990, Journal of cellular physiology.

[29]  S. Koury,et al.  Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. , 1989, The Journal of clinical investigation.

[30]  M. Marden,et al.  T-state hemoglobin with four ligands bound. , 1988, Biochemistry.

[31]  E. Scolnick,et al.  Molecular and cell biologic aspects of erythropoiesis in long-term bone marrow cultures. , 1981, Blood.

[32]  T. Dexter,et al.  Erythropoietin-stimulated erythropoiesis in long-term bone marrow culture , 1979, Nature.

[33]  G. Stamatoyannopoulos,et al.  Sheep fetal haematopoietic cells produce adult haemoglobin when transplanted in the adult animal , 1979, Nature.