Papaver rhoeas L. mapping with cokriging using UAV imagery

[1]  Jorge Torres-Sánchez,et al.  An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery , 2018, Remote. Sens..

[2]  Sammy A. Perdomo,et al.  RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields , 2018, Precision Agriculture.

[3]  R. Freckleton,et al.  Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with Alopecurus myosuroides , 2017, Weed research.

[4]  K. N. Reddy,et al.  UAV Low-Altitude Remote Sensing for Precision Weed Management , 2017, Weed Technology.

[5]  Michael Pflanz,et al.  Regression Kriging for Improving Crop Height Models Fusing Ultra-Sonic Sensing with UAV Imagery , 2017, Remote. Sens..

[6]  Cyrill Stachniss,et al.  UAV-based crop and weed classification for smart farming , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[7]  F. J. Mesas-Carrascosa,et al.  Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes , 2017 .

[8]  F. Castaldi,et al.  Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize , 2017, Precision Agriculture.

[9]  F. López-Granados,et al.  Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery , 2016, Agronomy for Sustainable Development.

[10]  José Manuel Peñá-Barragán,et al.  Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management , 2015, Remote. Sens..

[11]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[12]  Onisimo Mutanga,et al.  Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna , 2013 .

[13]  J. E. Rasmussen,et al.  Potential uses of small unmanned aircraft systems (UAS) in weed research , 2013 .

[14]  Yanbo Huang,et al.  Remote Sensing Applications to Precision Farming , 2013 .

[15]  F. López-Granados,et al.  Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.

[16]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[17]  Freek D. van der Meer,et al.  Remote-sensing image analysis and geostatistics , 2012 .

[18]  J. Kovacs,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[19]  D. Kalivas,et al.  Regional Mapping of Perennial Weeds in Cotton with the Use of Geostatistics , 2012, Weed Science.

[20]  Juan Manuel Dupuy,et al.  Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping , 2011 .

[21]  Jin Li,et al.  A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors , 2011, Ecol. Informatics.

[22]  Joel Torra,et al.  Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals , 2010 .

[23]  J. Recasens,et al.  Spatial Distribution and Temporal Stability of Prostrate Knotweed (Polygonum aviculare) and Corn Poppy (Papaver rhoeas) Seed Bank in a Cereal Field , 2009, Weed Science.

[24]  Esmaeil S. Nadimi,et al.  Site‐specific weed control technologies , 2009 .

[25]  F. López-Granados,et al.  A digital elevation model to aid geostatistical mapping of weeds in sunflower crops , 2009, Agronomy for Sustainable Development.

[26]  J. Recasens,et al.  Demography of Corn Poppy (Papaver rhoeas) in Relation to Emergence Time and Crop Competition , 2008, Weed Science.

[27]  J. Recasens,et al.  Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate , 2008 .

[28]  C. Cantero‐Martínez,et al.  Long‐term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions , 2007 .

[29]  O. Mutanga,et al.  Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna , 2006 .

[30]  P. Brain,et al.  Predicting the competitive effects of weed and crop density on weed biomass, weed seed production and crop yield in wheat. , 2006 .

[31]  J. M. Blanco-Moreno,et al.  Spatial and temporal patterns of Lolium rigidum–Avena sterilis mixed populations in a cereal field , 2006 .

[32]  Pierre Goovaerts,et al.  Fine-resolution mapping of soil organic carbon based on multivariate secondary data , 2006 .

[33]  M. Jurado-Expósito,et al.  Using geostatistical and remote sensing approaches for mapping soil properties , 2005 .

[34]  Angela Ribeiro,et al.  Comparison of sampling methodologies for site‐specific management of Avena sterilis , 2005 .

[35]  César Fernández-Quintanilla,et al.  Spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz , 2004 .

[36]  David Jones,et al.  Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images , 2004 .

[37]  Francisca López-Granados,et al.  Multi-species weed spatial variability and site-specific management maps in cultivated sunflower , 2003, Weed Science.

[38]  Margaret A. Oliver,et al.  Variograms of Ancillary Data to Aid Sampling for Soil Surveys , 2003, Precision Agriculture.

[39]  D. Mortensen,et al.  How good is your weed map? A comparison of spatial interpolators , 2003, Weed Science.

[40]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[41]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[42]  Svend Christensen,et al.  Spatial correlation between weed species densities and soil properties , 2002 .

[43]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[44]  R. Webster,et al.  Geostatistics for Environmental Scientists , 2001 .

[45]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[46]  G. Johnson,et al.  Spatial and temporal stability of weed populations over five years , 2000, Weed Science.

[47]  P. Goovaerts Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall , 2000 .

[48]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[49]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[50]  Board on Agriculture Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management , 1998 .

[51]  J. Cardina,et al.  The nature and consequence of weed spatial distribution , 1997, Weed Science.

[52]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[53]  T. Heisel,et al.  Annual weed distributions can be mapped with kriging , 1996 .

[54]  W. Donald,et al.  Geostatistics for Mapping Weeds, with a Canada Thistle (Cirsium arvense) Patch as a Case Study , 1994, Weed Science.

[55]  G. Meyer,et al.  Color indices for weed identification under various soil, residue, and lighting conditions , 1994 .

[56]  A. Flint,et al.  Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis , 1992 .

[57]  J. Everitt,et al.  Detecting Huisache (Acacia farnesiana) and Mexican Palo-verde (Parkinsonia aculeata) by Aerial Photography , 1987, Weed Science.

[58]  C. Tucker Asymptotic nature of grass canopy spectral reflectance. , 1977, Applied optics.

[59]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[60]  S. Clay,et al.  Site-specific Weed Management , 2017 .

[61]  Joan Vallès,et al.  Papaver rhoeas L. , 2014 .

[62]  Xavier Emery,et al.  Cokriging random fields with means related by known linear combinations , 2012, Comput. Geosci..

[63]  M. A. Oliver,et al.  Geostatistical Applications for Precision Agriculture , 2010 .

[64]  M. Madden,et al.  Large area forest inventory using Landsat ETM+: A geostatistical approach , 2009 .

[65]  Torben Heisel,et al.  Weed Mapping with Co-Kriging Using Soil Properties , 2004, Precision Agriculture.

[66]  D. L. Karlen,et al.  Spatial Analysis of Soil Fertility Parameters , 2004, Precision Agriculture.

[67]  J. C. Neto,et al.  A combined statistical-soft computing approach for classification and mapping weed species in minimum -tillage systems , 2004 .

[68]  Alicia Cirujeda Ranzenberger,et al.  Situación actual de las resistencias de 'Lolium rigidum' y 'Papaver rhodeas' en cereales de invierno , 2001 .

[69]  Lalit Kumar,et al.  Imaging Spectrometry and Vegetation Science , 2001 .

[70]  Alfred Stein,et al.  Spatial prediction by linear kriging , 1999 .

[71]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[72]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[73]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[74]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .