Accuracy Certificates for Computational Problems with Convex Structure

The goal of this paper is to introduce the notion of certificates, which verify the accuracy of solutions of computational problems with convex structure. Such problems include minimizing convex functions, variational inequalities with monotone operators, computing saddle points of convex-concave functions, and solving convex Nash equilibrium problems. We demonstrate how the implementation of the ellipsoid method and other cutting plane algorithms can be augmented with the computation of such certificates without significant increase of the computational effort. Further, we show that (computable) certificates exist for any algorithm that is capable of producing solutions of guaranteed accuracy.

[1]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[2]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[3]  D. J. Newman,et al.  Location of the Maximum on Unimodal Surfaces , 1965, JACM.

[4]  A. Auslender Brève communication. Résolution numérique d'inégalités variationnelles , 1973 .

[5]  A. Auslender,et al.  Resolution Numerique D’inegalites Variationnelles , 1974 .

[6]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[7]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[8]  Leonid A. Levin,et al.  An old linear programming algorithm runs in polynomial time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[10]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[11]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[12]  Michael J. Todd,et al.  The Ellipsoid Method Generates Dual Variables , 1985, Math. Oper. Res..

[13]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[14]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[15]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[16]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[17]  Uriel G. Rothblum,et al.  Dines—Fourier—Motzkin quantifier elimination and an application of corresponding transfer principles over ordered fields , 1992, Math. Program..

[18]  Uriel G. Rothblum,et al.  Formulation of linear problems and solution by a universal machine , 1994, Math. Program..

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[21]  S. Smale,et al.  The mathematics of numerical analysis , 1996 .

[22]  S. Smale,et al.  The mathematics of numerical analysis : 1995 AMS-SIAM Summer Seminar in Applied Mathematics, July 17-August 11, 1995, Park City, Utah , 1996 .

[23]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[26]  HϋKUKANE,et al.  NOTE ON NONCOOPERATIVE CONVEX GAMES , 2004 .

[27]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[28]  Arkadi Nemirovski,et al.  Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.