Mathematical Tools for Shape Analysis and Description

This book is a guide for researchers and practitioners to the new frontiers of 3D shape analysis and the complex mathematical tools most methods rely on. The target reader includes students, researchers and professionals with an undergraduate mathematics background, who wish to understand the mathematics behind shape analysis. The authors begin with a quick review of basic concepts in geometry, topology, differential geometry, and proceed to advanced notions of algebraic topology, always keeping an eye on the application of the theory, through examples of shape analysis methods such as 3D segmentation, correspondence, and retrieval. A number of research solutions in the field come from advances in pure and applied mathematics, as well as from the re-reading of classical theories and their adaptation to the discrete setting. In a world where disciplines (fortunately) have blurred boundaries, the authors believe that this guide will help to bridge the distance between theory and practice. Table of Contents: Acknowledgments / Figure Credits / About this Book / 3D Shape Analysis in a Nutshell / Geometry, Topology, and Shape Representation / Differential Geometry and Shape Analysis / Spectral Methods for Shape Analysis / Maps and Distances between Spaces / Algebraic Topology and Topology Invariants / Differential Topology and Shape Analysis / Reeb Graphs / Morse and Morse-Smale Complexes / Topological Persistence / Beyond Geometry and Topology / Resources / Bibliography / Authors' Biographies

[1]  Emanuele Danovaro,et al.  Topological Analysis and Characterization of Discrete Scalar Fields , 2002, Theoretical Foundations of Computer Vision.

[2]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[3]  Jennifer Gamble,et al.  Exploring uses of persistent homology for statistical analysis of landmark-based shape data , 2010, J. Multivar. Anal..

[4]  Tony Jebara,et al.  A Kernel Between Sets of Vectors , 2003, ICML.

[5]  Günter Rote,et al.  Simple and optimal output-sensitive construction of contour trees using monotone paths , 2005, Comput. Geom..

[6]  Ayellet Tal,et al.  Surface Regions of Interest for Viewpoint Selection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[8]  I. Petrovsky,et al.  Lectures On Partial Differential Equations , 1962 .

[9]  Bernd Hamann,et al.  Maximizing adaptivity in hierarchical topological models , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[10]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[11]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[12]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[13]  Anatoliĭ Timofeevich Fomenko,et al.  Visual geometry and topology , 1994 .

[14]  Federico Tombari,et al.  A combined texture-shape descriptor for enhanced 3D feature matching , 2011, 2011 18th IEEE International Conference on Image Processing.

[15]  Mehryar Mohri,et al.  Learning Non-Linear Combinations of Kernels , 2009, NIPS.

[16]  Michela Spagnuolo,et al.  Semantics-driven best view of 3D shapes , 2009, Comput. Graph..

[17]  Paul Clough,et al.  ImageCLEF: Experimental Evaluation in Visual Information Retrieval , 2010 .

[18]  R. Kimmel,et al.  An efficient solution to the eikonal equation on parametric manifolds , 2004 .

[19]  O. Sorkine Differential Representations for Mesh Processing , 2006 .

[20]  Bernd Hamann,et al.  Efficient Computation of Morse-Smale Complexes for Three-dimensional Scalar Functions , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Valerio Pascucci,et al.  Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[23]  Tamal K. Dey,et al.  An efficient computation of handle and tunnel loops via Reeb graphs , 2013, ACM Trans. Graph..

[24]  J. Paul Siebert,et al.  A functional-based segmentation of human body scans in arbitrary postures , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[26]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[27]  J. Maxwell,et al.  On Hills and Dales , 2011 .

[28]  Vincent Barra,et al.  Learning Kernels on Extended Reeb Graphs for 3D Shape Classification and Retrieval , 2013, 3DOR@Eurographics.

[29]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[30]  Vincent Barra,et al.  3D shape retrieval using Kernels on Extended Reeb Graphs , 2013, Pattern Recognit..

[31]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[32]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[33]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[34]  Valerio Pascucci,et al.  A Practical Approach to Two-Dimensional Scalar Topology , 2007, Topology-based Methods in Visualization.

[35]  Vincent Barra,et al.  3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs , 2014, The Visual Computer.

[36]  Leila De Floriani,et al.  Dimension-independent simplification and refinement of Morse complexes , 2011, Graph. Model..

[37]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[38]  Daniela Giorgi,et al.  PHOG: Photometric and geometric functions for textured shape retrieval , 2013, SGP '13.

[39]  Andrea Torsello,et al.  Matching hierarchical structures for shape recognition , 2004 .

[40]  Patrizio Frosini,et al.  Using matching distance in size theory: A survey , 2006, Int. J. Imaging Syst. Technol..

[41]  Daniela Giorgi,et al.  The hitchhiker's guide to the galaxy of mathematical tools for shape analysis , 2012, SIGGRAPH '12.

[42]  Daniel Cohen-Or,et al.  Active co-analysis of a set of shapes , 2012, ACM Trans. Graph..

[43]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[44]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[45]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[46]  Jian Sun,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, SIGGRAPH 2008.

[47]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[48]  E. Primrose,et al.  Topologie des Surfaces , 1972, The Mathematical Gazette.

[49]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2012, International Journal of Computer Vision.

[50]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[51]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[52]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[53]  Gert Vegter,et al.  Computational Topology , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[54]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[55]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[56]  Emanuele Danovaro,et al.  Morphology-driven simplification and multiresolution modeling of terrains , 2003, GIS '03.

[57]  Yuriko Takeshima,et al.  Topological volume skeletonization using adaptive tetrahedralization , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[58]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[59]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[60]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[61]  Francisco Escolano,et al.  Information-theoretic selection of high-dimensional spectral features for structural recognition , 2013, Comput. Vis. Image Underst..

[62]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[63]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[64]  Daniela Giorgi,et al.  Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.

[65]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[66]  M. Spagnuolo,et al.  Shape understanding by contour-driven retiling , 2003, The Visual Computer.

[67]  Paul Over,et al.  High-level feature detection from video in TRECVid: a 5-year retrospective of achievements , 2009 .

[68]  Hamid Laga,et al.  Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes , 2013, TOGS.

[69]  Marco Attene,et al.  Characterization of 3D shape parts for semantic annotation , 2009, Comput. Aided Des..

[70]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[71]  Thomas Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, SIGGRAPH 2009.

[72]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[73]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[74]  Louis Chevallier,et al.  SHREC'13 Track: Retrieval on Textured 3D Models , 2013, 3DOR@Eurographics.

[75]  Daniela Giorgi,et al.  SHREC'12 Track: Stability on Abstract Shapes , 2012, 3DOR@Eurographics.

[76]  Daniel Cohen-Or,et al.  Contextual Part Analogies in 3D Objects , 2010, International Journal of Computer Vision.

[77]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[78]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[79]  Prosenjit Bose,et al.  A survey of geodesic paths on 3D surfaces , 2011, Comput. Geom..

[80]  Valerio Pascucci,et al.  Time-varying reeb graphs for continuous space-time data , 2004, SCG '04.

[81]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[82]  Shi-Min Hu,et al.  Qualitative organization of collections of shapes via quartet analysis , 2013, ACM Trans. Graph..

[83]  Klaus Deckelnick Error analysis for a difference scheme approximating mean curvature flow , 2000 .

[84]  Zhiyong Huang,et al.  Combining Shape and Color for Retrieval of 3D Models , 2009, 2009 Fifth International Joint Conference on INC, IMS and IDC.

[85]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[86]  Vijay Natarajan,et al.  Efficient algorithms for computing Reeb graphs , 2009, Comput. Geom..

[87]  Valerio Pascucci,et al.  The contour spectrum , 1997 .

[88]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[89]  M. Abidi,et al.  Part decomposition of 3d surfaces , 2003 .

[90]  S. Rana,et al.  Topological data structures for surfaces: an introduction to geographical information science. , 2006 .

[91]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[92]  Stephen DiVerdi,et al.  Learning part-based templates from large collections of 3D shapes , 2013, ACM Trans. Graph..

[93]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[94]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[95]  Christian Rössl,et al.  Topological Representations of Vector Fields , 2008, Shape Analysis and Structuring.

[96]  Alexander M. Bronstein,et al.  Parallel algorithms for approximation of distance maps on parametric surfaces , 2008, TOGS.

[97]  Yong-Jin Liu,et al.  3D model retrieval based on color + geometry signatures , 2011, The Visual Computer.

[98]  Andrea Cerri,et al.  The Persistence Space in Multidimensional Persistent Homology , 2013, DGCI.

[99]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..

[100]  Mohamed Daoudi,et al.  Partial 3D Shape Retrieval by Reeb Pattern Unfolding , 2009, Comput. Graph. Forum.

[101]  Remco C. Veltkamp,et al.  SHREC2006: 3D Shape Retrieval Contest , 2006 .

[102]  D. Kendall The diffusion of shape , 1977, Advances in Applied Probability.

[103]  Guillaume Lavoué,et al.  A framework for the objective evaluation of segmentation algorithms using a ground-truth of human segmented 3D-models , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[104]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[105]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[106]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[107]  Bernd Hamann,et al.  Topology-based simplification for feature extraction from 3D scalar fields , 2005, VIS 05. IEEE Visualization, 2005..

[108]  B. Hamann,et al.  A multi-resolution data structure for two-dimensional Morse-Smale functions , 2003, IEEE Visualization, 2003. VIS 2003..

[109]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[110]  Roberto Diodato Reale e virtuale , 2012 .

[111]  Salman Parsa,et al.  A deterministic o(m log m) time algorithm for the reeb graph , 2012, SoCG '12.

[112]  Emanuele Danovaro,et al.  Extracting terrain morphology - a new algorithm and a comparative evaluation , 2007, GRAPP.

[113]  Patrizio Frosini,et al.  Size Functions and Formal Series , 2001, Applicable Algebra in Engineering, Communication and Computing.

[114]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[115]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[116]  Silvia Biasotti,et al.  Sub-part correspondence by structural descriptors of 3D shapes , 2006, Comput. Aided Des..

[117]  P. Frosini,et al.  A distance for similarity classes of submanifolds of a Euclidean space , 1990, Bulletin of the Australian Mathematical Society.

[118]  Facundo Mémoli,et al.  Some Properties of Gromov–Hausdorff Distances , 2012, Discret. Comput. Geom..

[119]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[120]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[121]  Satish Rao,et al.  Quartets MaxCut: A Divide and Conquer Quartets Algorithm , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[122]  Ron Kimmel,et al.  Schrödinger Diffusion for Shape Analysis with Texture , 2012, ECCV Workshops.

[123]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[124]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[125]  Radu Horaud,et al.  Keypoints and Local Descriptors of Scalar Functions on 2D Manifolds , 2012, International Journal of Computer Vision.

[126]  Roger L. Boyell,et al.  Hybrid techniques for real-time radar simulation , 1963, AFIPS '63 (Fall).

[127]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[128]  B. Schneider,et al.  Construction of Metric Surface Networks from Raster‐Based DEMs , 2006 .

[129]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[130]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[131]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[132]  Georges Quénot,et al.  TRECVID 2015 - An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2011, TRECVID.

[133]  Francesco Fedele,et al.  Euler characteristics of oceanic sea states , 2012, Math. Comput. Simul..

[134]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[135]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[136]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[137]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[138]  Patrizio Frosini,et al.  Measuring shapes by size functions , 1992, Other Conferences.

[139]  Tamal K. Dey,et al.  Computing homology groups of simplicial complexes in R3 , 1998, JACM.

[140]  Gabriel Taubin,et al.  A benchmark for surface reconstruction , 2013, TOGS.

[141]  Guido M. Cortelazzo,et al.  Combining color and shape descriptors for 3D model retrieval , 2013, Signal Process. Image Commun..

[142]  Rocío González-Díaz,et al.  Invariant representative cocycles of cohomology generators using irregular graph pyramids , 2011, Comput. Vis. Image Underst..

[143]  Jarek Rossignac,et al.  Blowing Bubbles for Multi-Scale Analysis and Decomposition of Triangle Meshes , 2003, Algorithmica.

[144]  Cindy Grimm,et al.  Estimating Curvature on Triangular Meshes , 2006, Int. J. Shape Model..

[145]  Christopher Giertsen,et al.  Graph-directed modelling from serial sections , 1990, The Visual Computer.

[146]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[147]  Herbert Edelsbrunner,et al.  Modeling with Simplicial Complexes , 1994, Canadian Conference on Computational Geometry.

[148]  Hans-Peter Seidel,et al.  Notes on the Simplification of the Morse-Smale Complex , 2014, Topological Methods in Data Analysis and Visualization.

[149]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[150]  R. Lee,et al.  Two-Dimensional Critical Point Configuration Graphs , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Ligang Liu,et al.  Co‐Segmentation of 3D Shapes via Subspace Clustering , 2012, Comput. Graph. Forum.

[152]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[153]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[154]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[155]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[156]  Alexander M. Bronstein,et al.  Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis , 2011, ArXiv.

[157]  Ajay Divakaran Multimedia Content Analysis , 2009 .

[158]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[159]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[160]  Giuseppe Patanè,et al.  Heat diffusion kernel and distance on surface meshes and point sets , 2013, Comput. Graph..

[161]  Tony Tung,et al.  The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes , 2005, Int. J. Shape Model..

[162]  Gerik Scheuermann,et al.  Topology-based Methods in Visualization , 2007, Topology-based Methods in Visualization.

[163]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[164]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[165]  Yusu Wang,et al.  A randomized O(m log m) time algorithm for computing Reeb graphs of arbitrary simplicial complexes , 2010, SCG.

[166]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2004, Discret. Comput. Geom..

[167]  Stephen DiVerdi,et al.  Exploring collections of 3D models using fuzzy correspondences , 2012, ACM Trans. Graph..

[168]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[169]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[170]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[171]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[172]  Jim Cox,et al.  Topological Zone Organization of Scalar Volume Data , 2004, Journal of Mathematical Imaging and Vision.

[173]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[174]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[175]  Silvia Biasotti,et al.  Shape comparison through mutual distances of real functions , 2010, 3DOR '10.

[176]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[177]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[178]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[179]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[180]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[181]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[182]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[183]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[184]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[185]  Daniel Cohen-Or,et al.  Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering , 2011, ACM Trans. Graph..

[186]  Tamal K. Dey,et al.  Optimal homologous cycles, total unimodularity, and linear programming , 2010, STOC '10.

[187]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[188]  Daniela Giorgi,et al.  Describing shapes by geometrical-topological properties of real functions , 2008, CSUR.

[189]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[190]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[191]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[192]  Hiroshi Maehara Why is P2 Not Embeddable in R3 , 1993 .

[193]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.