Forelimb proportions and kinematics: how are small primates different from other small mammals?

SUMMARY The crouched limb posture of small mammals enables them to react to unexpected irregularities in the support. Small arboreal primates would benefit from these kinematics in their arboreal habitat but it has been demonstrated that primates display certain differences in forelimb kinematics to other mammals. The objective of this paper is to find out whether these changes in forelimb kinematics are related to changes in body size and limb proportions. As primates descended from small ancestors, a comparison between living small primates and other small mammals makes it possible to determine the polarity of character transformations for kinematic and morphometric features proposed to be unique to primates. Walking kinematics of mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys was investigated using cineradiography. Morphometry was conducted on a sample of 110 mammals comprising of primates, marsupials, rodents and carnivores. It has been shown that forelimb kinematics change with increasing body size in such a way that limb protraction increases but retraction decreases. Total forelimb excursion, therefore, is almost independent of body size. Kinematic changes are linked to changes in forelimb proportions towards greater asymmetry between scapula and radius. Due to the spatial restriction inherent in the diagonal footfall sequence of primates, forelimb excursion is influenced by the excursion of the elongated hind limb. Hindlimb geometry, however, is highly conserved, as has been previously shown. The initial changes in forelimb kinematics might, therefore, be explained as solutions to a constraint rather than as adaptations to the particular demands of arboreal locomotion.

[1]  M. D. Rose Quadrupedalism in primates , 1973, Primates.

[2]  G. E. Goslow,et al.  Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. , 1981, The Journal of experimental biology.

[3]  J. Wible,et al.  Primates: cladistic diagnosis and relationships , 1987 .

[4]  D. Meldrum,et al.  Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations. , 1991, American journal of physical anthropology.

[5]  A. Biewener Biomechanical consequences of scaling , 2005, Journal of Experimental Biology.

[6]  N. Garbutt Mammals of Madagascar , 1999 .

[7]  R. Martin Towards a New Definition of Primates , 1968 .

[8]  R. McN. Alexander,et al.  Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta) , 2009 .

[9]  S. Larson Unique Aspects of Quadrupedal Locomotion in Nonhuman Primates , 1998 .

[10]  A. Rosenberger,et al.  Living New World monkeys (Platyrrhini) : with an introduction to Primates , 1978 .

[11]  D. Rasmussen Primate origins: Lessons from a neotropical marsupial , 1990, American journal of primatology.

[12]  D. Schmitt Evolutionary implications of the unusual walking mechanics of the common marmoset (C. jacchus). , 2003, American journal of physical anthropology.

[13]  D Schmitt,et al.  Heel contact as a function of substrate type and speed in primates. , 1995, American journal of physical anthropology.

[14]  P. Lemelin,et al.  Origins of primate locomotion: gait mechanics of the woolly opossum. , 2002, American journal of physical anthropology.

[15]  K. Steudel,et al.  Scaling of cursoriality in mammals , 1993, Journal of morphology.

[16]  R. German,et al.  Ontogenetic allometry in the locomotor skeleton of specialized half-bounding mammals , 2002 .

[17]  A. Biewener Locomotory stresses in the limb bones of two small mammals: the ground squirrel and chipmunk. , 1983, The Journal of experimental biology.

[18]  M. Macconaill,et al.  Evolution of the Primates , 1974, Nature.

[19]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[20]  John G. Fleagle,et al.  Primate locomotion : recent advances , 1998 .

[21]  J. Gray Studies in the Mechanics of the Tetrapod Skeleton , 1944 .

[22]  M. Cartmill Arboreal Adaptations and the Origin of the Order Primates , 1972 .

[23]  Yosef Hochberg,et al.  Some generalizations of the T-method in simultaneous inference , 1974 .

[24]  A. Casinos,et al.  What is a cursorial mammal , 1997 .

[25]  M. Illert,et al.  X‐Ray Study of the Cat Hindlimb During Treadmill Locomotion , 1994, The European journal of neuroscience.

[26]  P. Lemelin,et al.  Locomotor mechanics of the slender loris (Loris tardigradus). , 2004, Journal of human evolution.

[27]  F. Jenkins,et al.  The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  William L. Jungers,et al.  Body Size and Scaling of Limb Proportions in Primates , 1985 .

[29]  W. Kinzey,et al.  The ecological role of the callitrichidae: a review. , 1984, American journal of physical anthropology.

[30]  N. Rowe The Pictorial Guide to the Living Primates , 1996 .

[31]  R. Wayne,et al.  Limb morphology of domestic and wild canids: The influence of development on morphologic change , 1986, Journal of morphology.

[32]  A. Biewener Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. , 1983, The Journal of experimental biology.

[33]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[34]  R. Thorington CHAPTER 3 – Observations of Squirrel Monkeys in a Colombian Forest , 1968 .

[35]  Daniel Schmitt,et al.  Compliant walking in primates , 1999 .

[36]  P. Christiansen Scaling of mammalian long bones: small and large mammals compared , 1999 .

[37]  Robert W. Sussman,et al.  Primate origins and the evolution of angiosperms , 1991, American journal of primatology.

[38]  J. Vilensky,et al.  PRIMATE LOCOMOTION: Utilization and Control of Symmetrical Gaits , 1989 .

[39]  M. Fischer,et al.  Kinematic analysis of treadmill locomotion of Tree shrews, Tupaia glis (Scandentia: Tupaiidae) , 1999 .

[40]  J. P. Wells,et al.  Ontogeny of locomotion in rhesus macaques (Macaca mulatta): I. Early postnatal ontogeny of the musculoskeletal system , 1994 .

[41]  P. Gingerich,et al.  Dentition and systematic relationships of Altanius orlovi (Mammalia, Primates) from the early Eocene of Mongolia , 1991 .

[42]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[43]  A. Biewener Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[44]  Holger Preuschoft,et al.  What does "arboreal locomotion" mean exactly and what are the relationships between "climbing", environment and morphology? , 2002, Zeitschrift fur Morphologie und Anthropologie.

[45]  Alan Walker Chapter 12 – Prosimian Locomotor Behavior , 1979 .

[46]  R. Martin,et al.  The Study of Prosimian Behavior. , 1984 .

[47]  Eadweard Muybridge,et al.  Animals in Motion , 1957 .

[48]  F. Jenkins Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non‐cursorial mammals , 2009 .

[49]  B. Demes,et al.  Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates. , 2008, Journal of human evolution.

[50]  B. Demes,et al.  The kinetics of primate quadrupedalism: "hindlimb drive" reconsidered , 1994 .

[51]  B. Demes,et al.  Gait mechanics of lemurid primates on terrestrial and arboreal substrates. , 2005, Journal of human evolution.

[52]  M. Cartmill Rethinking primate origins. , 1974, Science.

[53]  D. Raichlen,et al.  Lateral sequence walking in infant Papio cynocephalus: implications for the evolution of diagonal sequence walking in primates. , 2005, American journal of physical anthropology.

[54]  C. Pond,et al.  Walker's Mammals of the World, 4th Edition, Ronald M. Nowak, John L. Paradiso. The Johns Hopkins University Press, Baltimore, Maryland (1983), 1xi, +1-568 (Vol. I), xxv+569-1362 (Vol. II). Price $65.00 , 1984 .

[55]  Reinhard Blickhan,et al.  Stable operation of an elastic three-segment leg , 2001, Biological Cybernetics.

[56]  The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. , 2002, Zeitschrift fur Morphologie und Anthropologie.

[57]  Peter Andrews,et al.  Major Topics in Primate and Human Evolution , 2009 .

[58]  K. Isler,et al.  Arboreal Locomotion in Wild Black-and-White Snub-Nosed Monkeys (Rhinopithecus bieti) , 2006, Folia Primatologica.

[59]  S. Cachel Primate adaptation and evolution , 1989, International Journal of Primatology.

[60]  Carsten Niemitz,et al.  Gravity, posture and locomotion in primates , 1990 .

[61]  S. Larson,et al.  Shoulder motion during quadrupedal walking in Cercopithecus aethiops: Integration of cineradiographic and electromyographic data , 1994 .

[62]  M. Cartmill 2 – Pads and Claws in Arboreal Locomotion , 1974 .

[63]  R. Martin,et al.  Adaptive origins of primates revisited. , 2006, Journal of human evolution.

[64]  D. Gebo Locomotor diversity in prosimian primates , 1987, American journal of primatology.

[65]  G. Maloiy,et al.  Stride lengths and stride frequencies of primates , 2009 .

[66]  Manuela Schmidt Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces. , 2005, American journal of physical anthropology.

[67]  T R Reynolds,et al.  Stride length and its determinants in humans, early hominids, primates, and mammals. , 1987, American journal of physical anthropology.

[68]  J. Bertram,et al.  Differential scaling of the long bones in the terrestrial carnivora and other mammals , 1990, Journal of morphology.

[69]  R. Blickhan,et al.  Preferred speeds in terrestrial vertebrates: are they equivalent? , 1988, The Journal of experimental biology.

[70]  Farish A. Jenkins,et al.  Hip structure and locomotion in ambulatory and cursorial carnivores , 2009 .

[71]  S. Larson,et al.  EMG of chimpanzee shoulder muscles during knuckle‐walking: problems of terrestrial locomotion in a suspensory adapted primate , 1987 .

[72]  J. Napier Evolutionary aspects of primate locomotion. , 1967, American journal of physical anthropology.

[73]  D. Gebo A shrew-sized origin for primates. , 2004, American journal of physical anthropology.

[74]  M. Cartmill,et al.  Support polygons and symmetrical gaits in mammals , 2002 .

[75]  D. Voges,et al.  Arboreal locomotion in small new-world monkeys. , 2002, Zeitschrift fur Morphologie und Anthropologie.

[76]  M. Cartmill,et al.  Footfall patterns and interlimb co‐ordination in opossums (Family Didelphidae): evidence for the evolution of diagonal‐sequence walking gaits in primates , 2003 .

[77]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[78]  J. Vilensky,et al.  Effects of size on Vervet (Cercopithecus aethiops) gait parameters: A cross‐sectional approach , 1988 .

[79]  M. Fischer Crouched posture and high fulcrum, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea) , 1994 .

[80]  Martin S. Fischer,et al.  Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals? , 2006 .

[81]  W. Howells The Antecedents of Man. An Introduction to the Evolution of the Primates. , 1961 .

[82]  Manuela Schmidt Hind limb proportions and kinematics: are small primates different from other small mammals? , 2005, Journal of Experimental Biology.

[83]  R. Alexander,et al.  A dynamic similarity hypothesis for the gaits of quadrupedal mammals , 2009 .

[84]  R. Blickhan,et al.  The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization--a review. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[85]  Daniel Schmitt,et al.  Limb excursion during quadrupedal walking: how do primates compare to other mammals? , 2001 .

[86]  B. Demes,et al.  Lateral bending of the lumbar spine during quadrupedalism in strepsirhines. , 2001, Journal of human evolution.

[87]  B. Benefit,et al.  Fossil Evidence for the Origins of Terrestriality among Old World Higher Primates , 1998 .

[88]  J. Fleagle,et al.  Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys , 1980 .

[89]  N. Schilling,et al.  Postnatal allometry of the skeleton in Tupaia glis (Scandentia: Tupaiidae) and Galea musteloides (Rodentia: Caviidae)--a test of the three-segment limb hypothesis. , 2006, Zoology.

[90]  L. Jacobs,et al.  Proposed fossil tree shrew genus Palaeotupaia , 1980, Nature.

[91]  K. Beard Phylogenetic Systematics of the Primatomorpha, with Special Reference to Dermoptera , 1993 .

[92]  A. R. Biknevicius,et al.  Correlation of symmetrical gaits and whole body mechanics: debunking myths in locomotor biodynamics. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[93]  V. Roth How elephants grow: heterochrony and the calibration of developmental stages in some living and fossil species , 1984 .

[94]  D. Boyer,et al.  Evolution of pedal grasping in Primates. , 2007, Journal of human evolution.

[95]  Jerrold H. Zar,et al.  Calculation and Miscalculation of the Allometric Equation as a Model in Biological Data , 1968 .

[96]  R. Sokal,et al.  Biometry: The Principles and Practice of Statistics in Biological Research (2nd ed.). , 1982 .

[97]  K. Steudel Patterns of intraspecific and interspecific allometry in Old World primates. , 1982, American journal of physical anthropology.

[98]  D. F. Hoyt,et al.  Gait and the energetics of locomotion in horses , 1981, Nature.

[99]  F. Jenkins 3 – Tree Shrew Locomotion and the Origins of Primate Arborealism* , 1974 .

[100]  J. Fleagle,et al.  Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella: a longitudinal and comparative study. , 1980, American journal of physical anthropology.

[101]  S. Larson,et al.  Uniqueness of primate forelimb posture during quadrupedal locomotion. , 2000, American journal of physical anthropology.

[102]  M. Fischer,et al.  Morphological Integration in Mammalian Limb Proportions: Dissociation between Function and Development , 2009, Evolution; international journal of organic evolution.

[103]  Martin S. Fischer,et al.  Scaling of long bones in ruminants with respect to the scapula , 2003 .

[104]  M. Fischer,et al.  Basic limb kinematics of small therian mammals. , 2002, The Journal of experimental biology.

[105]  M. Fischer,et al.  Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). , 2000, American journal of physical anthropology.

[106]  Paul A. Garber,et al.  Locomotor behavior and feeding ecology of the panamanian tamarin (Saguinus oedipus geoffroyi, callitrichidae, primates) , 1980, International Journal of Primatology.

[107]  J. E. Cronin,et al.  Tupaiid and Archonta Phylogeny: The Macromolecular Evidence , 1980 .

[108]  T. Reynolds Mechanics of increased support of weight by the hindlimbs in primates. , 1985, American journal of physical anthropology.

[109]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[110]  M. Hildebrand Symmetrical gaits of primates , 1967 .

[111]  R. Nowak,et al.  Walker's mammals of the world , 1968 .

[112]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[113]  S. Larson,et al.  Compliant walking in primates: elbow and knee yield in primates compared to other mammals. , 2004, American journal of physical anthropology.