3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios.

A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation.

[1]  Anisia J. Silva,et al.  A Quinazoline-2,4-Diamino Analog Suppresses Vibrio cholerae Flagellar Motility by Interacting with Motor Protein PomB and Induces Envelope Stress , 2013, Antimicrobial Agents and Chemotherapy.

[2]  S. Butler,et al.  Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. B. Kearns,et al.  A field guide to bacterial swarming motility , 2010, Nature Reviews Microbiology.

[4]  V. DiRita,et al.  The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT , 2006, Molecular microbiology.

[5]  J. Mekalanos,et al.  Virstatin inhibits dimerization of the transcriptional activator ToxT , 2007, Proceedings of the National Academy of Sciences.

[6]  V. DiRita,et al.  Analysis of an Autoregulatory Loop Controlling ToxT, Cholera Toxin, and Toxin-Coregulated Pilus Production inVibrio cholerae , 1999, Journal of bacteriology.

[7]  Koichiro Yamamoto,et al.  Culture Conditions for Stimulating Cholera Toxin Production by Vibrio cholerae O1 El Tor , 1986, Microbiology and immunology.

[8]  M. Waldor,et al.  Regulation and Temporal Expression Patterns of Vibrio cholerae Virulence Genes during Infection , 1999, Cell.

[9]  J. Mekalanos,et al.  Copyright © 1998, American Society for Microbiology Differential Regulation of Multiple Flagellins in Vibrio cholerae , 1997 .

[10]  S. Pukatzki,et al.  Antibiotic resistance mechanisms of Vibrio cholerae. , 2011, Journal of medical microbiology.

[11]  J. Mekalanos,et al.  Small-Molecule Inhibitor of Vibrio cholerae Virulence and Intestinal Colonization , 2005, Science.

[12]  A. Camilli,et al.  Contribution of Hemagglutinin/Protease and Motility to the Pathogenesis of El Tor Biotype Cholera , 2006, Infection and Immunity.

[13]  M. Simon,et al.  Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus , 1990, Journal of bacteriology.

[14]  Lei Yan,et al.  Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. , 2010, Future medicinal chemistry.

[15]  F. Yildiz,et al.  The Vibrio cholerae Flagellar Regulatory Hierarchy Controls Expression of Virulence Factors , 2009, Journal of bacteriology.

[16]  Anisia J. Silva,et al.  A High-Throughput Screening Assay for Inhibitors of Bacterial Motility Identifies a Novel Inhibitor of the Na+-Driven Flagellar Motor and Virulence Gene Expression in Vibrio cholerae , 2011, Antimicrobial Agents and Chemotherapy.

[17]  Michio Homma,et al.  The Polar Flagellar Motor of Vibrio cholerae Is Driven by an Na+ Motive Force , 1999, Journal of bacteriology.

[18]  S. Butler,et al.  Selection for in vivo regulators of bacterial virulence , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Taylor,et al.  Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains , 1996, Infection and immunity.

[20]  Masaru Kojima,et al.  The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species , 2007, Molecular microbiology.

[21]  Marco F. Ramoni,et al.  A Systems Biology Approach To Modeling Vibrio cholerae Gene Expression under Virulence-Inducing Conditions , 2010, Journal of bacteriology.

[22]  Eric J. Nelson,et al.  Antibiotics for both moderate and severe cholera. , 2011, The New England journal of medicine.

[23]  L. McCarter Dual Flagellar Systems Enable Motility under Different Circumstances , 2004, Journal of Molecular Microbiology and Biotechnology.

[24]  S. Faruque,et al.  Pathogenicity islands and phages in Vibrio cholerae evolution. , 2003, Trends in microbiology.

[25]  C. Häse,et al.  Flagellum-Independent Surface Migration ofVibrio cholerae and Escherichia coli , 2001, Journal of bacteriology.