Adaptive Block Coordinate Descent for Distortion Optimization

We present a new algorithm for optimizing geometric energies and computing positively oriented simplicial mappings. Our major improvements over the state‐of‐the‐art are: (i) introduction of new energies for repairing inverted and collapsed simplices; (ii) adaptive partitioning of vertices into coordinate blocks with the blended local‐global strategy for more efficient optimization and (iii) introduction of the displacement norm for improving convergence criteria and for controlling block partitioning. Together these improvements form the basis for the Adaptive Block Coordinate Descent (ABCD) algorithm aimed at robust geometric optimization. ABCD achieves state‐of‐the‐art results in distortion minimization, even under hard positional constraints and highly distorted invalid initializations that contain thousands of collapsed and inverted elements. Starting with an invalid non‐injective initial map, ABCD behaves as a modified block coordinate descent up to the point where the current mapping is cleared of invalid simplices. Then, the algorithm converges rapidly into the chosen iterative solver. Our method is very general, fast‐converging and easily parallelizable. We show over a wide range of 2D and 3D problems that our algorithm is more robust than existing techniques for locally injective mapping.

[1]  Yi Chen,et al.  Wasserstein blue noise sampling , 2017, TOGS.

[2]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[3]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[4]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[5]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[6]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[7]  Olga Sorkine-Hornung,et al.  Autocuts: simultaneous distortion and cut optimization for UV mapping , 2017, ACM Trans. Graph..

[8]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[9]  Yehoshua Y. Zeevi,et al.  Multi-resolution approach to computing locally injective maps on meshes , 2019, SIGGRAPH Posters.

[10]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[11]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[12]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[13]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[14]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[15]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[16]  Daniele Panozzo,et al.  Progressive embedding , 2019, ACM Trans. Graph..

[17]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[18]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[19]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[20]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[21]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[22]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[23]  Stephen P. Boyd,et al.  End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging , 2018, ACM Trans. Graph..

[24]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[25]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[26]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[27]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[28]  Peter Richtárik,et al.  Inexact Coordinate Descent: Complexity and Preconditioning , 2013, J. Optim. Theory Appl..

[29]  Rohan Sawhney,et al.  Boundary First Flattening , 2017, ACM Trans. Graph..

[30]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[31]  Yehoshua Y. Zeevi,et al.  Geometry-based distortion measures for space deformation , 2018, Graph. Model..

[32]  Ofir Weber,et al.  GPU-accelerated locally injective shape deformation , 2017, ACM Trans. Graph..

[33]  Vladimir G. Kim,et al.  OptCuts: joint optimization of surface cuts and parameterization , 2019, ACM Trans. Graph..

[34]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[35]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[36]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[37]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[38]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[39]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[40]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[41]  W. T. Tutte How to Draw a Graph , 1963 .

[42]  Hans-Peter Seidel,et al.  Piecewise linear mapping optimization based on the complex view , 2018, Comput. Graph. Forum.

[43]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[44]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..