Two–Stage Instrumental Variables Identification of Polynomial Wiener Systems with Invertible Nonlinearities

Abstract A new two-stage approach to the identification of polynomial Wiener systems is proposed. It is assumed that the linear dynamic system is described by a transfer function model, the memoryless nonlinear element is invertible and the inverse nonlinear function is a polynomial. Based on these assumptions and by introducing a new extended parametrization, the Wiener model is transformed into a linear-in-parameters form. In Stage I, parameters of the transformed Wiener model are estimated using the least squares (LS) and instrumental variables (IV) methods. Although the obtained parameter estimates are consistent, the number of parameters of the transformed Wiener model is much greater than that of the original one. Moreover, there is no unique relationship between parameters of the inverse nonlinear function and those of the transformed Wiener model. In Stage II, based on the assumption that the linear dynamic model is already known, parameters of the inverse nonlinear function are estimated uniquely using the IV method. In this way, not only is the parameter redundancy removed but also the parameter estimation accuracy is increased. A numerical example is included to demonstrate the practical effectiveness of the proposed approach.

[1]  Fouad Giri,et al.  Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators , 2014, Autom..

[2]  Krzysztof J. Latawiec,et al.  Modeling and identification of a fractional-order discrete-time SISO Laguerre-Wiener system , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[3]  Xianqiang Yang,et al.  Robust identification of Wiener time-delay system with expectation-maximization algorithm , 2017, J. Frankl. Inst..

[4]  E. Baeyens,et al.  SUBSPACE IDENTIFICATION OF MULTIVARIABLE HAMMERSTEIN AND WIENER MODELS , 2002 .

[5]  Johan Schoukens,et al.  Wiener system identification with generalized orthonormal basis functions , 2014, Autom..

[6]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[7]  Ignacio Santamaría,et al.  Blind Identification of SIMO Wiener Systems Based on Kernel Canonical Correlation Analysis , 2013, IEEE Transactions on Signal Processing.

[8]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[9]  Alexander Medvedev,et al.  Identification of Polynomial Wiener Systems via Volterra-Laguerre Series with Model Mismatch , 2015 .

[10]  Andrzej Janczak Identification of Nonlinear Systems Using Neural Networks and Polynomial Models , 2005 .

[11]  Maciej Ławryńczuk,et al.  Practical nonlinear predictive control algorithms for neural Wiener models , 2013 .

[12]  Dan Fan,et al.  Identification for disturbed MIMO Wiener systems , 2009 .

[13]  Andrzej Janczak,et al.  Least Squares and Instrumental Variables Identification of Polynomial Wiener Systems , 2018, 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR).

[14]  Maciej Lawrynczuk,et al.  Nonlinear State-Space Predictive Control With On-Line Linearisation And State Estimation , 2015, Int. J. Appl. Math. Comput. Sci..

[15]  Lincheng Zhou,et al.  Gradient based iterative parameter identification for Wiener nonlinear systems , 2013 .

[16]  Johan Schoukens,et al.  Information matrix and D-optimal design with Gaussian inputs for Wiener model identification , 2016, Autom..

[17]  SchoukensJohan,et al.  Wiener system identification with generalized orthonormal basis functions , 2014 .

[18]  Adil Brouri,et al.  Frequency Identification Approach For Wiener Systems , 2015 .

[19]  Andrzej Janczak,et al.  Instrumental variables approach to identification of a class of MIMO Wiener systems , 2007 .

[20]  William Ipanaque,et al.  Identification and Control of pH using Optimal Piecewise Linear Wiener Model , 2011 .

[21]  Maciej Lawrynczuk,et al.  Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models , 2016, Neurocomputing.

[22]  Yves Rolain,et al.  Parametric MIMO parallel Wiener identification , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[24]  Kwang-Ki K. Kim,et al.  Robust nonlinear internal model control of stable Wiener systems , 2012 .

[25]  Yonghong Tan,et al.  Recursive identification algorithm for dynamic systems with output backlash and its convergence , 2009, Int. J. Appl. Math. Comput. Sci..

[26]  Enrique Baeyens,et al.  Subspace-based Identification Algorithms for Hammerstein and Wiener Models , 2005, Eur. J. Control.

[27]  José Luis Figueroa,et al.  Robust model predictive control of a Wiener-like system , 2013, J. Frankl. Inst..

[28]  Yong Mei,et al.  Block-oriented feedforward control with demonstration to nonlinear parameterized Wiener modeling , 2016 .

[29]  Koen Tiels,et al.  Identification of block-oriented nonlinear systems starting from linear approximations: A survey , 2016, Autom..

[30]  M. Arefi,et al.  A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. , 2017, ISA transactions.

[31]  Maciej Ławryńczuk,et al.  Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models , 2016 .

[32]  Wlodzimierz Greblicki,et al.  Recursive identification of Wiener systems , 2001 .

[33]  Wlodzimierz Greblicki,et al.  Nonparametric approach to Wiener system identification , 1997 .

[34]  SchoukensJohan,et al.  Information matrix and D-optimal design with Gaussian inputs for Wiener model identification , 2016 .

[35]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[36]  David T. Westwick,et al.  Identification of Wiener Models in the Presence of ARIMA Process Noise , 2016 .

[37]  J. Vörös Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .

[38]  A. Janczak,et al.  Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach , 2004 .

[39]  Johan A. K. Suykens,et al.  On the identification of Wiener systems with polynomial nonlinearity , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[40]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[41]  S. Billings,et al.  Theory of separable processes with applications to the identification of nonlinear systems , 1978 .

[42]  Xianqiang Yang,et al.  EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data , 2015 .

[43]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[44]  Hajime Ase,et al.  A Subspace-based Identification of Two-channel Wiener Systems , 2015 .

[45]  H. Al. Duwaish,et al.  Use of Multilayer Feedforward Neural Networks in Identification and Control of Wiener Model , 1996 .