An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type

We study the numerical solution of a class of parabolic integro-differential equations with weakly singular kernels. We use an $hp$-version discontinuous Galerkin (DG) method for the discretization in time. We derive optimal $hp$-version error estimates and show that exponential rates of convergence can be achieved for solutions with singular (temporal) behavior near $t=0$ caused by the weakly singular kernel. Moreover, we prove that by using nonuniformly refined time steps, optimal algebraic convergence rates can be achieved for the $h$-version DG method. We then combine the DG time-stepping method with a standard finite element discretization in space, and present an optimal error analysis of the resulting fully discrete scheme. Our theoretical results are numerically validated in a series of test problems.

[1]  G. Fairweather,et al.  Finite element methods for parabolic and hyperbolic partial integro-differential equations , 1988 .

[2]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[3]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[4]  William W. Hager,et al.  Discontinuous Galerkin methods for ordinary differential equations , 1981 .

[5]  Richard E. Ewing,et al.  Mixed Finite Element Approximations of Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2009, SIAM J. Numer. Anal..

[6]  Stig Larsson,et al.  Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method , 1998, Math. Comput..

[7]  Dominik Schötzau,et al.  hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .

[8]  William McLean,et al.  Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..

[9]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[10]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[11]  Vidar Thomée,et al.  Time discretization of an integro-differential equation of parabolic type , 1986 .

[12]  Melvin L. Heard,et al.  An Abstract Parabolic Volterra Integrodifferential Equation , 1982 .

[13]  Vidar Thomée,et al.  Time discretization via Laplace transformation of an integro-differential equation of parabolic type , 2006, Numerische Mathematik.

[14]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[15]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[16]  Nai Ying Zhang,et al.  On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type , 1993 .

[17]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[18]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[19]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[20]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[21]  Avner Friedman,et al.  Volterra integral equations in Banach space , 1967 .

[22]  Vidar Thomée,et al.  Discretization with variable time steps of an evolution equation with a positive-type memory term , 1996 .

[23]  Dominik Schötzau,et al.  hp discontinuous Galerkin time stepping for parabolic problems , 2000 .

[24]  F. Olver Asymptotics and Special Functions , 1974 .

[25]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[26]  Kassem Mustapha,et al.  A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel , 2010 .